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Introduction

As the presence of Information Technology increases, so grows the impact of the design
decisions shaping the IT solutions that touch our lives. We feel this impact as we are
amazed at the new possibilities offered by developments like the Internet, which all but
redefined our social interaction experience within the time span of one generation. But
the impact of IT design decisions is not always positive. We sometimes feel negative
impact as small irritations, like our kids complaining whenever their favorite social
media site modifies its functionality. Sometimes, however, things go really wrong,
with far-reaching consequences.

Once in a while, a single wrong design decision makes its impact felt across an
entire nation’s political landscape, or even globally. In the past decade, the Netherlands
alone has seen a number of such events:

e (C2000, a newly designed communication system for emergency workers that
did not allow proper communication from within buildings, and that failed in
large-scale disasters [Expertgroep C2000} 2009].

e OV-chip, a brand new public transportation payment chip card whose encryption
was so weak that it was breached as soon as it was publicly available, allowing
people to modify the travel balance on their cards without paying [de Winter,
2011].

e Dutch highway tunnel safety systems, with software quality issues so severe
that the tunnels were fully opened to the public years after the original dead-
line [[Gram and Keulen, 2010].

What do these examples have in common? First of all, they are all highly visible
projects in the public government sector, plagued by multiple issues. Second, in all
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CHAPTER 1. INTRODUCTION

three cases, is was not the functionality of the solutions that was wrong - it was the
other, “non-functional” aspects: in these cases, capacity, security and quality. Third, in
all three cases, there was a client/supplier situation, where the requirements specifica-
tion (the “what”) was drawn up by the client and the solution design (the “how”) was
created by one or more suppliers.

A review [Dalcher and Genus)2003]] estimated the financial cost of failed IT projects
in the United States at US$150 billion per annum, with a further US$140 billion in the
European Union. More importantly, the above examples show a significant impact
on our quality of life. Some are even life threatening. If we want to address these
problems, the IT industry and its clients need a better understanding of how to address
non-functional needs. We need to better understand how to architect IT solutions that
adequately serve their purpose, especially in client/supplier situations.

1.1 Context

This thesis is the result of a journey to improve architecting practices in Logica, a
large IT Services company. This journey started in 2003, when we identified a need
to better understand the impact of Non-Functional Requirements on our solutions and
their delivery. It gained momentum and focus in 2006, when the company’s Technical
Board expressed the requirement for a standard approach towards architecting across
the company. This requirement gave us a clear sense of direction, and the result was
the establishment and implementation of a solution architecting approach: Risk- and
Cost Driven Architecture (RCDA).

Logica is an IT corporation of approximately 40,000 people across 40 countries.
The company has a diverse business portfolio, consisting of services centered on busi-
ness consulting, systems development and integration, and IT and business process
outsourcing. Although the scope of the work presented in this thesis is the whole
Logica group, the surveys described were limited to the Netherlands, which has 4500
employees. Within the company, a function called “technical assurance” is responsible
for assuring the feasibility, suitability and acceptability of the solutions we offer our
clients. The majority of the work in this thesis was done in the context of technical
assurance in Logica Netherlands. The main activity of the technical assurance function
is to review large and complex bids and delivery projects. The extensive interaction
we had over the years with hundreds of IT projects with various degrees of size and
complexity, in multiple industry sectors, is one of the main data sources for the re-
search presented here. The lessons learned and insights harvested from these projects
are scattered throughout the chapters of this thesis.

The global head of technical assurance also leads the group-wide Architecture

2



1.2. KEY CONCEPTS

Community of Practice (ACoP), an informal international community of practicing
architects. The ACoP is the second important source of data that contributed to this
research, especially the surveys.

A third activity of the technical assurance function is to initiate improvements
within the company, based on the lessons learned in the bids and projects we review. It
is in this capacity that the drive towards a common architecture approach was initiated,
culminating in the development and implementation of RCDA.

1.2 Key Concepts

1.2.1 Solution Architecture

The success of an IT Services company depends on its ability to make the right choices
about the structure and behavior of the solutions it delivers to its customers. In the last
decades, the IT industry has started calling this structure and behavior “architecture”,
in analogy to the building design domain. In the field of software engineering, the
notion of “software architecture” is one of the key technical advances over the last
decades [Farenhorst and de Boer], 2009||. In that period, there have been two distinct
fundamental views as to the nature of architecture:

1. Architecture as a higher level abstraction for software systems, expressed in
components and connectors [Shaw, |1990, [Perry and Wolf} |1992].

2. Architecture as a set of design decisions, including their rationale [Kruchten,
1998, Jansen and Boschl 2005, [Tyree and Akerman, 2005].

View 1 is about “the system-level design of software, in which the important de-
cisions are concerned with the kinds of modules and subsystems to use and the way
these modules and subsystems are organized” [[Shawl [1990]]. View 1 is focused on the
choice and organization of components and connectors.

View 2, architecture as a set of design decisions [Jansen and Bosch,|[2005], is more
generic and has been beneficial to both the architecture research community and its
practitioners [Tyree and Akerman, [2005]]. This view of architecture implies a view of
architecting as a decision making process, and likewise a view of the architect as a
decision maker.

In Chapter@ we will discuss our own view about the nature of architecture, which
builds on and extends these two views of software architecture. Most the work pre-
sented here is based on practices and research that have emerged from the software
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CHAPTER 1. INTRODUCTION

architecture community of researchers and practitioners. The term software architec-
ture, however, no longer covers the main subject of the work presented in this thesis. As
an example, of the architects we have trained in the approach presented in Chapter [0
about half did not call themselves software architects. Their area of interest was often
wider than software-intensive systems, covering business processes, IT infrastructure,
information architecture, etc. They were interested in the approach because they had
to architect solutions, and their architecting work involved all the same key concepts:
stakeholders, concerns, decision making, etc. All of the “non-software”-architects in-
dicated that the material presented was applicable to their area of interest.

The name we use for this spectrum of architecting disciplines is Solution Archi-
tecture, to indicate that the common denominator of these architecture disciplines is
to find a solution to a particular set of stakeholders’ needs. This term is also used in
the Enterprise Architecture domain: The Open Group Architecture Framework (TO-
GAF) [The Open Groupl |2009] defines a Solution Architecture as a description of a
discrete and focused business operation or activity and how IS/IT supports that oper-
ation. A Solution Architecture typically applies to a single project or project release,
assisting in the translation of requirements into a solution vision, high-level business
and/or IT system specifications, and a portfolio of implementation tasks. Although this
definition is a little more specific than our notion encompassing various architecture
genres, the focus on a single project and solution vision corresponds to our application
of the term.

Our definition of Solution Architecture is based on the ISO 42010 definition of
architecture: the fundamental concepts or properties of a system in its environment
embodied in its elements, relationships, and in the principles of its design and evolu-
tion. [ISO 42010, 2011]] This is a very comprehensive definition, and its scope depends
very much on the interpretation of the word “system”. If by System is meant e.g. a
complete enterprise, this definition pertains to an Enterprise Architecture. Solution Ar-
chitecture is simply defined as the architecture of a solution addressing a particular set
of stakeholder needs. This solution is the “system” in the ISO 42010 definition. The
term Solution Architecture encompasses high-level solution shaping for most of the
solutions built and operated by IT services companies: applications, service solutions,
embedded systems, infrastructure, SOA implementation, systems integration etc. It
can span infrastructure, information architecture, business processes and their environ-
ment. Thus our definition of Solution Architecture is narrower than the generic ISO
42010 architecture definition not so much in the scope of the system, but in the raison
d’étre of the architecture: to address a particular set of stakeholder needs.
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1.2. KEY CONCEPTS

1.2.2 Non-Functional Requirements

Requirements that describe what a solution should do are generally called functional
requirements (FRs). There are, however, “other” requirements that are more closely
related to how the solution should do what it does: how well, how fast, how reliably,
etc. To distinguish these other requirements from the functional requirements, they are
often called non-functional requirements or NFRs. This is admittedly not a very good
name: rather than describe what its subject is, it says what it’s not. In the industrial
context of the research presented here, however, the term NFRs is well established, and
hence we have chosen to maintain it. Many terms closely related to NFRs are regularly
used, such as “quality requirements” or “qualities” [Boehm and In| [1996, Bass et al.|
2003]], “attribute requirements” [Gilb, [1988]|], “performance attributes” [Gilb} [2005],
“extra-functional requirements”, “system quality requirements” or even “-ilities”. [Ma-
iriza et al.l 2010] gives a nice overview and classification of the use of this terminol-
ogy. In we present our own classification of requirements used throughout
this thesis. The classification distinguishes between two kinds of non-functional re-
quirements: NonFunctional Requirements = Quality Attribute Requirements-+
DeliveryRequirements, where Quality Attribute Requirements denotes the quantifi-
able requirements about solution quality attributes, and Delivery Requirements denotes
the requirements on the delivery of the solution (such as when or by which means it
should be delivered). The reader will notice that in some chapters, delivery require-
ments play a secondary role; specifically in Chapters [3] and [4] the term non-functional
requirement is almost synonymous to quality attribute requirement.

NFRs represent a promising area for improvement, because dealing with NFRs is
viewed as a particularly difficult part of requirements engineering [Berntsson Svenssonl
2009]. Not properly taking NFRs into account is considered to be among the most ex-
pensive and difficult of errors to correct once an information system is completed [|[My-
lopoulos et al., |1992] and it is rated as one of the ten biggest risks in requirements
engineering [Lawrence et al., 2001]. NFRs are widely seen as the driving force for
shaping IT systems’ architectures [Mylopoulos| 2006, |(Chung et al.,|1999| |Paech et al.,
2002, Bass et al.,[2003]. According to [Glinzl 2007], “there is a unanimous consensus
that non-functional requirements are important and can be critical for the success of a
project”.

In this thesis, we will be looking at how architects handle NFRs, and at how we can
improve this handling in terms of solution design and communication between clients
and suppliers of IT solutions.




CHAPTER 1. INTRODUCTION

1.3 Objectives

The research this thesis is based on was performed in a business context, and in the end
the research objective always was a business goal: to improve the success of the com-
pany. This extremely high-level business goal is approached from several directions:

e The success of an IT Services company depends on its ability to make the right
choices about the structure and behavior of the solutions it delivers to its cus-
tomers.

e In Chapters @and[7] it is represented by the concept of IT project success. This
concept is explored in detail in §4.2.T)on page [61}

e In Chapterl6] it is decomposed into the key aspects of consistency in delivery, risk
management, customer satisfaction and knowledge incorporation for the purpose
of defining an architecting process.

At the beginning of our journey, we suspected that an improvement in handling
NFRs would contribute significantly to the company’s business goals. More specifi-
cally, we encountered two practical challenges that needed addressing: how to struc-
ture a solution to address conflicting NFRs, and how to optimally quantify NFRs in
customer-supplier relationships where stakeholder communication is limited for con-
tractual or legal reasons. We also developed an interest in how architects perceive and
handle NFRs, and if there is a relationship with project success. Hence, the first part of
this thesis addresses the following research question and sub-questions:

RQ-1 How can Non-Functional Requirements be handled to improve the success of
IT solutions and the projects delivering them?

(a) How can a solution be structured to best address conflicting Non-Functional
Requirements?

(b) What is the best way to quantify Non-Functional Requirements across a
contractual divide between customer and supplier?

(c) How do architects perceive and deal with non-functional requirements?
In 2006, the Technical Board expressed the requirement for a standard approach

towards architecting solutions across the company. This standard approach would be
subject to the requirements set by the CMMI®[T_1 an approach [CMMI Product Team,

!CMMI: Capability Maturity Model Integration® registered in the U.S. Patent and Trademark Office by
Carnegie Mellon University.
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1.4. APPROACH

2010] for improving and assessing organizations’ performance, containing ample ma-
terial relevant to IT solution development. We started out to define a formal architecting
process, but in 2009 decided that a framework of practices harvested from industry and
literature would better fit the company’s needs for a highly generic, customizable ap-
proach. The second part of this thesis documents this part of the journey, and addresses
the following research question and sub-questions:

RQ-2 Whatis a good solution architecting approach to improve an IT service provider’s
success?

(a) What is the nature of solution architecting in the business context of a large
IT services company?

(b) What requirements does an architecture process need to fulfill in order to
comply with CMMI maturity level 3?

(c) How do architectural knowledge sharing practices relate to challenges in
solution delivery projects?

(d) What architecting practices improve an IT service provider’s success, and
what guidance should they contain?

(e) What is the effect of training architects in such architecting practices?

1.4 Approach

In addressing the objectives identified above, we took a pragmatic approach. The work
had to be done in the context of a busy and dynamic IT company, within the usual
business constraints and pressures of such a real-life environment. This environment
carried the benefit of giving us access to key resources that were used extensively in
this research: the Architecture Community of Practice (ACoP) and the interactions with
hundreds of active IT delivery projects in the context of technical assurance. On the
downside however, due to the environment’s constraints and pressures, the work is not
the result of a carefully planned research program. Rather, it presents nuggets of related
research that helped a business identify and implement some important improvements.

The thesis contains the results of three surveys among the architecture community,
and one major case study. The approaches we present are partly based on insights
harvested from projects that we interacted with; some of the projects are presented
as small case studies, examples and anecdotal evidence. Other than the surveys and
harvested insights, important contributors to the approaches are literature and analysis.

The research presented here is best classified as action research, since the primary
researcher was an active participant in the studies, and the objective was to improve

7



CHAPTER 1. INTRODUCTION

the subject of the studies and to generate knowledge at the same time [Kockl} 2011]].
According to [Davison et al., 2004, the five stages of Canonical Action Research
are diagnosis (identifying a problem), action planning (considering alternative courses
of action), action taking (selecting a course of action), evaluating (studying the con-
sequences) and specifying learning (identifying general findings). These stages are
clearly present in the work presented here: both surveys and the case study are diagno-
sis, and the approaches presented contain action planning and taking, combined with
evaluating and identifying learning.

1.5 Outline

The structure of this work reflects the journey described above. The work is in two
parts: part I is about dealing with non-functional requirements (NFRs), and part II is
about establishing a solution architecting approach. Part I, Dealing with Non-Functional
Requirements, starts with two chapters that each analyze an existing problem in deal-
ing with NFRs in practice (RQ-1a and RQ-1b), and then presents a method for dealing
with that problem. The third and final chapter in part I presents the result of a survey
held to gain understanding of how architects deal with NFRs (RQ-1c). The chapters in
part I are:

Chapter[2: Resolving Requirement Conflicts through Non-Functional Decomposition.
We start out with a chapter on how NFRs (and especially conflicting NFRs)
directly impact a solution’s preferred structure. We build a framework that both
provides a model and a repeatable method to transform conflicting requirements
into a system decomposition. The chapter presents the framework, and discusses
two cases onto which the method is applied.

Chapter[3: Dealing with Non-Functional Requirements across the Contractual Di-
vide. In a commercial setting, client/supplier relationships are subject to bid-
ding rules and contracts, which often place severe limitations on information
exchange between stakeholders and designers. In this chapter, we explore the
effect of limitations on the process of optimal quantification of Non-Functional
Requirements, and introduce a practice designed to deal with them: Require-
ments Convergence Planning.

Chapter[d: How Architects See Non-Functional Requirements: Beware of Modifiabil-
ity. This chapter presents the analysis and key findings of a survey about dealing
with non-functional requirements (NFRs) among architects. We find that, as long
as the architect is aware of the importance of NFRs, they do not adversely affect
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project success, with one exception: highly business critical modifiability tends
to be detrimental to project success, even when the architect is aware of it.

Part II, Establishing a Solution Architecting Approach, starts with a case study
on architectural decision making. The following chapters highlight various aspects
(RQ-2a-d) that have contributed to RCDA, our solution architecting approach, which
is presented in a chapter of its own (RQ-2e):

Chapter[5; Case Study: Successful Architecture for Short Message Service Center.
This chapter presents and analyzes the key architectural decisions in the design
of a successful Short Message Service Center as part of a GSM network, and
looks at how architectural choices that deviated from the prevailing “fashion”
led to a successful architecture.

Chapter|[6; The Influence of CMMI on Establishing an Architecting Process. This
chapter presents the elicitation of requirements an architecting process needs to
address in order to be CMMI compliant. It then analyzes the potential impact
of these requirements on generic architecting processes found in literature, and
investigates how the CMMI can be extended to better support solution architect-
ing.

Chapter[7: Successful Architectural Knowledge Sharing: Beware of Emotions. This
chapter presents the analysis and key findings of a survey on architectural knowl-
edge sharing. Impact mechanisms between project size, project success, and
architectural knowledge sharing practices and challenges are deduced from the
survey’s result based on reasoning, experience and literature.

Chapter[8; Architecting as a Risk- and Cost Management Discipline. We propose to
view architecting as a risk- and cost management discipline. This point of view
helps architects identify the key concerns to address in their decision making, by
providing a simple, relatively objective way to assess architectural significance.
It also helps business stakeholders to align the architect’s activities and results
with their own goals.

Chapter[0; Risk- and Cost Driven Architecture: a Pragmatic Solution Architecting
Approach. This chapter describes RCDA, the solution architecting approach de-
veloped in Logica. The approach consists of a set of practices, harvested from
Logica practitioners and enhanced by the research presented in this thesis. We
present the structure of the approach and its rationale, and the result of a survey
measuring RCDA’s effect among architects trained in the approach.
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Chapter[10; Concluding Remarks. We present the key contributions of this thesis,
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draw conclusions and discuss future work.

Publications

Most of the work in this thesis has been or is about to be published elsewhere:

Chapter [2| has been adapted from “Resolving Requirement Conflicts through
Non-Functional Decomposition,” by Eltjo R. Poort and Peter H. N. de With,
pp-145-154, Fourth Working IEEE/IFIP Conference on Software Architecture
(WICSA'04), 2004.

Chapter [3 has been submitted as “Dealing with Non-Functional Requirements
across the Contractual Divide,” by Eltjo R. Poort, Andrew Key, Peter H.N. de
With and Hans van Vliet to 10th Working IEEE/IFIP Conference on Software
Architecture (WICSA’12), 2012.

Chapter 4] has been adapted from “How Architects See Non-Functional Require-
ments: Beware of Modifiability,” by Eltjo R. Poort, Nick Martens, Inge van de
Weerd and Hans van Vliet, pp.37-51, 18th International Working Conference
on Requirements Engineering: Foundation for Software Quality (REFSQ’12),
2012.

Chapter [5] has been adapted from “Successful Architecture for Short Message
Service Center,” by Eltjo R. Poort, Hans Adriaanse, Arie Kuijt, Peter H.N. de
With, pp.299-300, Fifth Working IEEE/IFIP Conference on Software Architec-
ture (WICSA’05), 2005.

Chapter[6|has been adapted from “The Influence of CMMI on Establishing an Ar-
chitecting Process” by Eltjo R. Poort, Herman Postema, Andrew Key, and Peter
H.N.de With, pp.215-230, QoSA’07 Proceedings of the Quality of software ar-
chitectures 3rd international conference on Software architectures, components,
and applications, 2007.

Chapter[7|has been adapted from “Successful Architectural Knowledge Sharing:
Beware of Emotions” by Eltjo R. Poort, Agung Pramono, Michiel Perdeck, Vik-
tor Clerc and Hans van Vliet, pp.130-145, Lecture Notes in Computer Science,
2009, Volume 5581/2009. A version of this paper also appears in [Ali Babar|
et al.,[2009].
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e Chapter[§|has been adapted from “Architecting as a Risk- and Cost Management
Discipline,” by Eltjo R. Poort and Hans van Vliet, pp.2-11, 2011 Ninth Working
IEEE/IFIP Conference on Software Architecture, 2011. An extended version
of this paper, including parts of Chapter [9] has been accepted to the Journal of
Systems and Software, 2012.
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Resolving Requirement Conflicts
through Non-Functional Decomposition

A lack of insight into the relationship between (non-) functional requirements and
architectural solutions often leads to problems in IT projects. This chapter presents a
model that concentrates on the mapping of non-functional requirements onto functional
requirements for architecture design. We build a framework that both provides a model
and a repeatable method to transform conflicting requirements into a system decom-
position. This chapter presents the framework, and discusses two cases onto which the
method is applied. In one case, the method is successfully used to reconstruct the high-
level structure of a solution from its requirements. The second case is one in which the
method was actually used to create a solution design fitting the stakeholders’ needs,
and that is reproducible from its requirements.

2.1 Introduction

The primary result of any architectural design process is a blueprint of a solution, iden-
tifying the main components and their relationships from different views. A topic that is
currently under close scrutiny is the derivation of these architectural components from
the functional and non-functional solution requirements. The well-known discipline of
Functional Decomposition (FD) can be used as a basis, but will by itself rarely yield
a solution that fulfills the non-functional requirements. This is not surprising, since
rules of Functional Decomposition only deal with generic best practices for achieving
software quality, such as high cohesion and low coupling. FD has no rules to deal with
solution-specific quality requirements.
Several approaches exist for deriving a solution’s architecture from its NFRs:
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e [Boehm and In} |[1996] identifies a link between NFRs and a set of product and
process strategies to address them. The process Boehm proposes to select strate-
gies is called the WinWin spiral model [Boehm and Bose, [1994]; it is basically
a negotiation model.

o A group around Lawrence Chung and John Mylopoulos has done extensive work
on an NFR Framework, a process-oriented approach to deal with NFRs [My-
lopoulos et al., |1992, |Chung et al.l [1999]. They introduce the concepts of “soft-
goals” and “satisficing”, meaning that goals are set without clear-cut criteria
when they are fulfilled. Satisficing is a word for sufficiently satisfying the goals
from the stakeholders’ point of view. NFRs are modeled as conflicting or syner-
gistic goals in a softgoal interdependency graph. Design alternatives that realize
the NFRs can subsequently be evaluated using tradeoff analysis.

e In [Boschi |2000] the subject is dealt with by first obtaining a functionality-based
architecture, and then applying architectural transformations to satisfy the NFRs.
A good example of a detailed method using this iterative approach is given
in [de Bruin and van Vliet, 2002]].

e Publications of the Software Engineering Institute [Bass et al.l [2003]] show the
development of a framework and tooling towards methodical architectural de-
sign, based on NFRs: Attribute Driven Design.

e Another group has developed the Component - Bus - System - Property (CBSP)
method for iterative architectural refinement of requirements. In [Gruenbacher
et al., 2001]], the need is mentioned to group artifacts to create an architecture,
but no indication is given how to do this.

All the approaches mentioned above rely on knowledge of the effect of a number
of known strategies on quality attributes. Every approach needs a pre-existing cat-
alogue of “product strategies” [Boehm and In| [1996|, “operationalizations” [[Chung
et al.,|1999], “tactics” [Bass et al.,[2003]] or similar. The whole Patterns community is
based on the need to classify and document such known strategies [Gamma et al., 1995
Buschmann et al., 1996, |Gross and Yul, [2001]]. In this chapter, we present a more direct
approach, based on first principles rather than a catalogue of pre-existing strategies.
We have developed a method for decomposing a solution based on the conflicts in the
solution requirements. We have named this method Non-Functional Decomposition
(NFD) to highlight the contrast with Functional Decomposition, and to emphasize the
importance of Non-Functional Requirements in this process.

NFED proposes a method for grouping and splitting of architectural entities based
on requirements, and is complementary to the CBSP approach in that sense.
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A clear benefit of the NFD approach is that it focuses on non-functional and other
supplementary requirements right from the beginning, yielding a defined trace from
those requirements to the solution structure. Moreover, the development process and its
requirements are also integrated in the approach, giving a better basis for architectural
and project decision trade-offs.

The sequence of this chapter is as follows. First, we will present and discuss some
of the shortcomings of the generally accepted model for the architectural design pro-
cess. We will then develop a refined model of this process. Then we will describe the
process for deriving solution structure from supplementary requirements that is based
on this model. The succeeding sections then describe two cases: one in which the NFD
method was used, and one in which it is applied retrospectively to show its validity. We
conclude with a discussion.

2.2 Motivation for Non-Functional Decomposition

Our interest in Non-Functional Decomposition is based on a number of distinct obser-
vations from our substantial experience in architectural design.

o Cohesive force of supplementary requirements: good architectures tend to cluster
functions with similar supplementary requirements in the same subsystem.

e Divide-and-conquer conflict resolution principle: if a subsystem has to fulfill
conflicting requirements, it is useful to separate the parts that cause the con-
flict(s).

o Entanglement of function, structure and building process of software. these three
elements are highly interrelated.

NFD is a framework consisting of both a model of the elements involved in the
architectural process, and a method for architecting software-intensive systems based
on solution requirements. It is a framework in the sense that it does not venture into the
details of achieving specific quality attributes (or other supplementary requirements);
there is ample literature available for each conceivable attribute. Rather, it highlights
the relationships between these requirements, their conflicts and ways to resolve them.
It also helps in making choices about the development process.
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Figure 2.1: Accepted model of relationship between requirements and architecture.

2.3 Model of Requirements and Architecture

2.3.1 Accepted model for architectural design

When studying the available literature on the relationship between requirements and
architecture (see §2.1)), the following widely accepted model emerges.

System Requirements are usually divided into Functional and Non-Functional Re-
quirements. These Non-Functional Requirements (NFRs) are often referred to as Qual-
ity (Attribute) Requirements; these two are treated more or less as synonyms. A gener-
ally accepted principle is the leading NFR principle: in designing system architectures,
the Non-Functional or Quality Requirements are at least as important as the Functional
Requirements. In order to satisfy NFRs the software architect applies Architectural
Strategies to the system design, such as design patterns, layering techniques, etc. The
architect’s task then becomes an n-dimensional optimization problem: find the combi-
nation of architectural strategies that yields a solution with the best fit to the n NFRs.

The implicit model underlying this reasoning is depicted in Fig. 2.1] Although the
simplicity of this view has its merits, in our experience it has some shortcomings. Par-
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ticularly, the relationship between quality attributes and non-functional requirements
is oversimplified, and it ignores the fact that functional requirements can also be very
important in architectural design. It also ignores that NFRs often put constraints on
the solution development process rather than on the solution architecture, implying
that architectural choices are not the only contributors to satisfy NFRs. Conversely,
requirements on the development process like project deadlines and budget limitations
can have a large impact on solution architecture.

2.3.2 Refined requirements classification for NFD

Our new NFD model, as is illustrated in Fig. 2.2] refines the classification of require-
ments, and is more detailed on the non-functional aspects. Two major differences
come to the foreground: functional requirements are split into primary and secondary
functional requirements, and the secondary functional requirements are grouped to-
gether with the non-functional requirements. This group is called supplementary re-
quirements. Additionally, a distinction is made between two types of non-functional
requirements: quality attributes and delivery requirements.

Let us now define the Primary and Supplementary Requirements groups in more
detail.

Primary Functional Requirements are demands that require functions which di-
rectly contribute to the goal of the solution, or yield direct value to its users. They
represent the principal functionality of the solution. The identification of primary re-
quirements (which ones to select) is similar to determining which processes in an orga-
nization are primary processes. All primary requirements are functional (there are no
non-functional primary requirements), but not all functional requirements are primary
requirements, as will be explained in the next section.

Supplementary Requirements represent all other requirements imposed on the so-
Iution. They can be functional or non-functional. Supplementary requirements (SRs)
are always about primary requirements, and usually put constraints on how the primary
functionality is implemented. In the NFD model, the Supplementary Requirements are
further divided into three subcategories:

1. Secondary Functional Requirements (SFRs) require functionality that is sec-
ondary to the goal of the solution. Examples are functions needed to manage
the system or its data, logging or tracing functions, or functions that implement
some legal requirement. Like all other SRs, they usually apply to a particular
subset of the primary requirements. For example, “All transactions in module
X should be logged”, or “access to data in table Y is subject to authorization
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Figure 2.2: The NFD model of the relationship between solution requirements and

architecture.
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according to model Z”. SFRs are usually not quantifiable: the solution either has
the functionality or it doesn’t.

2. Quality Attribute Requirements (QARSs) are quantifiable requirements about so-
lution quality attributes. They can always be expressed as a number and a scale,
e.g. following Gilb’s notation techniques [Gilbl ZOOSﬂ Examples of QARs are
reliability, usability, performance and supportability. There are many taxonomies
available, e.g. SQuaRE [ISO/IEC 25000} [2005].

3. Delivery Requirements constitute the third category of supplementary require-
ments. They put constraints on the solution that cannot be measured by sys-
tem assessment, and incorporate e.g. managerial issues. Examples of DRs are
time-to-market, maximum cost, resource availability and outsourcibility. Deliv-
ery requirements can be expressed in “-ilities” that make them resemble quality
attribute requirements, such as affordability or viability, but they are not about
solution quality. However, they can be just as important to solution design as
functional or quality requirements.

A solution’s compliance with QARs and SFRs can in principle be measured by
anyone having access to the system once it has been realized, regardless of whether
they know about its history or its cost. Compliance with Delivery Requirements can
only be assessed by looking at how the solution was realized.

There is a relationship between Secondary Functional Requirements (SFRs) and
functional solutions to Quality Attribute Requirements, which will be discussed later.
SFRs can usually be traced back to a high-level quality need, but to express them as
a quality requirement would leave too much room for interpretation. For example,
the requirement to log system errors over an SMTP interface is an implementation of
a manageability need, but to just require that “System management should require at
most 0.1 FTE” would allow other, perhaps less desirable solutions. Satisfying Quality
Attribute Requirements may also entail adding functionality to the solution, but this
time the choice of functionality is at the architect’s decision.

2.3.3 The nature of requirement conflicts

The reason for a classification into primary and secondary requirements is a preparation
for the NFD process that leads to solution decomposition exploiting the requirement
conflicts. The NFD version of the leading NFR principle cited above is that in design-
ing solution architectures, the supplementary requirements are more important than

Tom Gilb first introduced these techniques in [|Gilb} /1988], and later incorporated them in the “plan-
guage” notation [[Gilb} 2005|
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the primary requirements. Primary requirements are never conflicting: if they would,
the requirements would be intrinsically inconsistent or the problem statement poorly
posed. However, supplementary requirements including secondary functional require-
ments, can appear to be conflicting, as is explained in the following paragraph.

Requirements on a software system are not intrinsically conflicting, because con-
flicts arise from limitations in the design strategy domain. Boehm and In have based
their software tools for identifying quality-requirement conflicts on this fact [Boehm!
and In| |1996]. We have further analyzed the common strategies to satisfy supplemen-
tary requirements, including quality attributes. Our analysis clarifies that some quality
attributes and delivery requirements may be so tightly bound to certain types of strate-
gies, that they are effectively inherently conflicting. This situation arises when a quality
attribute can only be achieved by one class of strategies, and when this class of strate-
gies is invariably detrimental to another quality attribute. The Feature-Solution graphs
introduced in [de Bruin and van Vliet, |2002|] provide a good way to visualize these
conflicts. We will illustrate this point with a few examples.

We have categorized the strategies for fulfilling software quality requirements into
three types and nicknamed them the three strategy dimensions of solution construction:
the process dimension, the structure dimension and the functional dimension.

1. One way to achieve supplementary requirements is by making choices in the
software building process. Models like the Capability Maturity Model Integra-
tion [CMMI Product Team, [2010] and other software process improvement prac-
tices generally aim at improving the quality of software. Recommended practices
have been documented to achieve certain quantified Safety Integrity Levels [IEC
61508, |1999] or to fulfill certain security requirements [CCPSO| |1999]. These
practices tend to make the software construction process more expensive, giving
rise to the first example of inherently conflicting requirements: reliability versus
affordability (not an NFD quality attribute, but possibly a delivery requirement).

2. Another way to influence quality attributes or to satisfy other supplementary re-
quirements is by making choices in the structure of the software. Examples
of software structuring solutions include layering, applying of design patterns,
choosing higher or lower level languages, modifying the granularity or modular-
ity of the software, and so on. We have started to explore this area somewhat
in [Poort and de With, [2003]]. Generally speaking, the structure-based solutions
seem to have one common element: more structure (i.e. higher level program-
ming language, more layers, higher granularity etc.) means better modifiability,
but less efficient code. This is the second example of inherently conflicting qual-
ity attributes: modifiability versus efficiency.
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3. The third way to achieve supplementary requirements is by building functional-
ity that is specifically aimed at achieving a quality or delivery objective. Exam-
ples are encryption and access control functionality to achieve a certain security
goal [CCPSO,[1999]], or caching functionality to achieve a certain response time
and thus increase usability. Although these types of strategies are not specifically
detrimental to other quality attributes, they do increase the size and complexity
of the solution, leading to effects such as lower affordability and reliability. The
reader should note the difference between secondary functional requirements
with underlying quality needs and functional strategies aimed at satisfying qual-
ity attribute requirements. In the former case, the functional strategy is raised
to the status of requirement and the responsibility of the requirement specifier.
In the latter case, the functional strategy is the responsibility of the architect.
In practical situations, this dichotomy may be ambiguous and quality needs are
translated into functional solutions by an iterative process that involves both the
requirements specifier and the architect.

In the above examples of “inherently conflicting” requirements, the conflicts emerge
when applying the solution strategies to a single subsystem or component. These con-
flicts can often be resolved by separating the subsystem or component into different
parts, and applying different solution strategies to the respective parts. Viewed from
this perspective, modifiability and efficiency need not be conflicting: one can decom-
pose a solution into low-coupled subsystems for modifiability, and then apply strategies
for making the code of each subsystem more efficient. Approaches of this kind are put
into practice intuitively by experienced architects, and we have modelled them in our
Non-functional Decomposition Framework.

2.3.4 Applying solution strategies

The NFD model of the architecture process refines the n-dimensional optimization
problem of the consensus model into a 3 x 3 matrix. The cells of this matrix con-
tain strategies from each of the three strategy dimensions fulfilling each of the three
types of requirements. Whereas the diagonal of the matrix contains obvious strategies
(e.g. functional solutions to functional requirements), the off-diagonal cells often sug-
gest important solutions that can help achieve requirements that would otherwise pose
problems. Without being complete, we provide some examples of each of the matrix
cells.

Functional strategies aimed at functional requirements: the required functions
should be implemented.

Functional strategies aimed at quality-attribute requirements: these are functions
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like encryption, access control, caching and duplication, that are specifically designed
to achieve a quality objective.

Functional strategies aimed at delivery requirements: delivery requirements, like
outsourcing or time-to-market limitations, often exist. Their realization points to e.g.
reuse of off-the-shelf components or purchasing and integrating commercial products.

Structural strategies aimed at functional requirements: examples of structures that
contribute to functional requirements are database normalization, extracting of generic
functionality, functional or non-functional decomposition.

Structural strategies aimed at quality-attribute requirements: lead to programming
in patterns, but there are also other structural strategies contributing to quality at-
tributes, such as the choice of programming language or correct parametrization. The
NFD method itself also contributes to fulfilling quality-attribute requirements.

Structural strategies aimed at delivery requirements: delivery requirements like
preferred release schedules can be realized by adapting the structure of the solution
to accommodate incremental deployment. Another example is the choice of a rapid
development platform (fourth generation language), which dictates a particular solution
structure. NFD can also be applied here.

Process strategies aimed at functional requirements: an example is using a conven-
tional cascade-development method, which prioritizes system functionality over time
and budget limitations.

Process strategies aimed at quality-attribute requirements: examples of these are
best practices from the Software Process Improvement community to improve reliabil-
ity, or Common Criteria assurance packages to achieve security goals.

Process strategies aimed at delivery requirements: delivery requirements such as
“user involvement” can be realized by prototyping, or “strict deployment deadline”
by using a development method such as EVO [Gilb, 2005|] or the Rational Unified
Process®E] (RUP®) [Kruchten|, [1998] that employs time-boxing techniques.

The combination of applied strategies in the process dimension results in the best
development process to fit the solution requirements. The sum of the applied functional
strategies and the realization of the primary functional requirements together compose
the solution functionality. The solution architecture consists of a high-level descrip-
tion of the applied functional (logical view) and structural (subsystem, development,
deployment views) strategies.

2RUP, Rational and Rational Unified Process are trademarks of International Business Machines Corpo-
ration.
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Figure 2.3: The NFD Process.

2.3.5 The role of the NFD process

Non-Functional Decomposition (NFD) is a strategy in the structural dimension of so-
lution construction. The NFD process helps to optimize the structure of the solution
for all supplementary requirements, including delivery and secondary functional re-
quirements, which are generally associated with process or functional strategies first.
It does this by adapting the solution structure to the requirement conflicts in the solu-
tion, and isolating conflicting requirements in subsystems that can then be individually
optimized by applying process, structural or functional strategies. It is essentially an
iterative divide-and-conquer strategy for resolving requirement conflicts.
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2.4 The NFD Process

The process of NFD is depicted in Fig.[2.3]and contains the following steps.

Gather and prioritize requirements can be based on any modern requirements elic-
itation technique, provided that the documented requirements show how the Primary
Functional Requirements (PFRs) are mapped to the Supplementary Requirements (SRs).
It is important that the requirements are somehow prioritized, since prioritization of
PFRs is important for project and release planning, and prioritization of SRs is impor-
tant for the architecture. Example from the Unified Process: in the UP, FRs are gen-
erally documented as use cases, and SRs as supplementary specifications. The NFD
method requires that the supplementary specifications are made specific to (groups of)
use cases, e.g. by documenting them in the Use-Case Descriptions, or specifying to
which use cases SRs apply in the Supplementary Specifications document. Another
way of linking SRs to FRs is the use of quality attribute scenarios as described in [Bass
et al.,2003].

Group functions based on supplementary requirements is the process of finding all
(primary) functional requirements that share or have similar supplementary require-
ments, and grouping them together. This will yield a number of cross-sections of the
functionality of the solution, depending on which supplementary requirement is used
as a grouping criterion. In this step, the distinction between PFRs and SRs is less im-
portant: each group will have a number of functions, originating from both primary
and secondary requirements, which will be treated equally during the remainder of the
process. Example: a time-to-market priority grouping will divide functionality into
groups that are candidates to be included in different release phases of the solution,
while availability grouping will divide functionality into candidate groups to run on
platforms with differing availability characteristics.

Identify supplementary requirement conflicts yields two types of conflicts:

1. Grouping conflicts are caused by differences in grouping of functions, i.e. the
grouping of the functions is significantly different from one SR to the other. Ex-
ample: there are three function groups, called WorkFlow, DataEntry and Anal-
ysis (Fig. [2.4). Security requirements for DataEntry and Analysis are similar
and more restrictive then those for WorkFlow, but modifiability requirements for
Analysis are more stringent than those for DataEntry and WorkFlow.

2. In-group conflicts are conflicting supplementary requirements within one func-
tion group. Example: the Analysis function group from the previous example
has both critical performance requirements and high modifiability requirements.
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Figure 2.4: Grouping conflict example.

Split conflicting function groups deals with in-group conflicts. Most of the time, a
further analysis of an in-group conflict will show that the conflicting requirements can
actually be assigned to different functions. These functions are then separated, leading
to a splitting of the function group. The resulting two or more new function groups
may then be reconsidered for being included in other function groups, so the process
re-enters the “Group functions based on SRs” stage. This loop is repeated until no
in-group conflicts are left that can be split further. Function groups that cannot be split
in any way are flagged as risk factors. They deserve close attention during the rest of
the process and need to be dealt with prior to large-scale project implementation, e.g.
in an architectural prototype.

Draft and compare candidate decompositions: After the in-group conflicts are
solved, the resulting grouping conflicts will be the basis for the architectural decom-
position. A number of candidate decompositions into architectural components result,
each favoring the main supplementary requirement that the function grouping is based
upon.

At this stage, prioritization of supplementary requirements becomes important. In
our experience, the candidate decomposition that is based on the SRs having the highest
stakeholder priority, yields the architecture that best fits the stakeholder requirements.
This does not mean that we suggest that the n-dimensional optimization problem men-
tioned earlier can be reduced to a series of one-dimensional optimizations, designing
for the most important requirement first and then narrowing down the design choices
further for each requirement. But in the decomposition process, it turns out that the de-
compositions based on the SRs with the highest priority have the best chance of yield-
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ing a solution the stakeholders can live with. In case of doubt, an impact analysis of
the top three decompositions can be made, e.g. by using the CBAM method [[Kazman
et al.| 2002]]. The decomposition with the best fit to the stakeholder’s needs (including
risk and cost) is selected for implementation.

2.5 Case Study: Criminal Investigation System

2.5.1 Background

Two IT organizations affiliated with the Dutch ministry of internal affairs, the Con-
cern Informatiemanagement Politie (CIP, “Concern Information Management Police”)
and the ICT-Service Coperatie Politie, Justitie en Veiligheid (ISC, “ICT Service Co-
operation Police, Justice and Safety”), were developing a product line for nationwide
processing of and access to criminal investigation and intelligence data The product
line was called Politiesuite Opsporing (PSO, “Police Suite for Investigation”). One of
the authors was the lead software architect for PSO, and NFD was used to design the
suite’s top-level decomposition. The main challenge was to create an architecture that
would allow the addition of many new products to the suite in the years to come, with-
out compromising the strict privacy and confidentiality requirements on the system.

2.5.2 Summary of requirements

The suite’s primary functionality is the support of all business processes related to crim-
inal investigation, including management of the processes, gathering of data through
multiple channels, and structuring and analysis of the data. The three most important
supplementary requirements according to the stakeholders are:

SR1 Authorization: access to criminal investigation data is restricted by special pri-
vacy laws. Unauthorized access to privileged data is by far the biggest threat to
a criminal investigation system.

SR2 Reliability: reliable application of authorization and other business rules is cru-
cial. The system should be designed in such a way that the enforcement of
especially authorization rules is reliable and stable, even after several product
generations.

3The authors would like to thank the ISC and CIP organizations for granting permission to publish this
case study.
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SR3 Development time: the criminal investigation systems currently in use are based
on obsolete architectures and there is an urgent need in the field to support new
functionality. Exceeding the stated deadline of one year of development time is
unacceptable.

SR1 is a secondary functional requirement, SR2 a quality attribute requirement,
and SR3 a delivery requirement.

2.5.3 Results

NFD was applied by first mapping the most important supplementary requirements
onto the functional features, and then basing the main architectural decomposition on
this mapping. SR1 applies specifically to the data gathered for criminal investigation
purposes. It turned out that the most reliable and best maintainable solution for the
future was to create a central component for access control and storage of these data.
Since the legal name for storage of such data is a police register, this central compo-
nent was named the “register vault”. By using off-the-shelf components supplied by a
database vendor, the register vault could be assembled and an architectural prototype
evaluated within a few months time, making a good start at satisfying SR3.

In this case, RUP was used to streamline the development process. The RUP Sup-
plementary Specifications artifact is the place to document quality and other supple-
mentary specifications, but the standard template treats these as system wide or “gen-
eral” requirements. We changed the template slightly to accommodate documenting the
mapping between primary and supplementary requirements. We did this at the level of
“features” as defined by RUP. This allowed us to document the trace from primary and
supplementary requirements to the system decomposition design decisions.

In the end, the Non-Functional Decomposition principles turned out to be very
useful in communicating to the stakeholders how our design decisions were related to
their stated supplementary requirements.

2.6 Case Study: Dutch Road-Pricing System

In this section we will apply the NFD model and process to analyze a large system on
roadpricing. One of the authors was involved in this project (until it was suspended for
political reasons), which is described below. Although NFD was not available at the
time, applying the method retrospectively to this case presents a good illustration of its
principles.
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2.6.1 Background

In the late 1990s, the Dutch government decided to drastically change the tax system
for automobile owners and drivers. Automobile tax traditionally consisted of gasoline
tax, annual motor vehicle tax and BPM (personal motor vehicle tax payed once when
purchasing a vehicle). The system should be replaced by a direct tax system based
on usage: gasoline tax would be reduced to the legal European minimum, and annual
motor vehicle tax and BPM would be completely replaced by a roadpricing scheme
called “Kilometerheffing” (“Charging by kilometer”), hereafter referred to as KMH.
By differentiated pricing of road segments based on the time of day and location, the
scheme could also be used to make drivers avoid congested (and thus more expensive)
areas during rush hours. Feasibility of the scheme would highly depend on the use of
IT systems, some of which would have to be in the vehicle. The government planned
to share the cost of developing and manufacturing the in-vehicle systems (called “Mo-
bimeters”) with the multimedia, communication and automobile industries by making
generic components of those systems available to those industries.

2.6.2 System requirements

The Mobimeter requirements were shared with industry partners{zf] in order to facilitate
discussion. Without going into too much detail, the original requirements can roughly
be summarized as follows.

PF1 The system shall continuously measure the position and driving direction of the
vehicle.

PF2 The tariff used for calculating the cost during a journey is determined on the basis
of the following parameters (hereinafter referred to as Tariff Parameters):

Date and time;
Vehicle position;
Direction of travel;
Tariff table;
Vehicle category.

PF3 A driver shall be notified of the applied tariff while driving.

PF4 The system shall determine the distance travelled by a vehicle.

4The original requirements were drawn up by a team led by Maarten Boasson (University of Amsterdam).
They were based on the “Mobimiles” report of Roel Pieper (University of Twente), which was never formally
published
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PF5 The mobility costs due is calculated as being the product of the distance travelled
times the current tariff.

PF6 At least once every month in which 1000 kilometers has been driven or at least
once per elapsed year, whichever comes earlier, all data shall be communicated
to the tax office.

PF7 The system shall be able to receive new tariff tables.

The associated supplementary requirements (SRs) are summarized below. For
brevity, we only mention the most important ones:

S1 Privacy: a vehicle’s mobility patterns may not be deducible, either in real time
(tracking) or afterwards from system data (tracing).

S2 Verifiability: the KMH Road-Pricing System shall enable verification that the road
pricing charge has been determined correctly, without requiring more than one
physical inspection per year.

S3 Provability: The system shall enable drivers to verify the correctness of the charges
by inspecting all relevant data.

S4 Security: All data required for the KMH Road-Pricing System process will be
protected against unauthorized modification.

S8 Re-usability: all in-vehicle system functions that could be useful for other applica-
tions shall be made available for re-use by third parties.

S12 Viability: industry partners and the relevant governmental and non-governmental
organizations shall be involved as much as possible in the development of the
KMH system.

S13 Standardization: any interfaces to be designed for in-vehicle equipment shall be
developed in close cooperation with the relevant standardization bodies.

S1, S4 and S8 are quality-attribute requirements. S2 and S3 are secondary func-
tional requirements. S12 and S13 are delivery requirements that originally did not
occur in the requirements document, but in the project plan. We mention them here
because in the NFD model they qualify as supplementary requirements. As will be
shown, they did impact the system architecture.

Table [2.1] shows how the original supplementary requirements map onto the pri-
mary requirements. Note that some of the mappings apply to subsets of a particular
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Table 2.1: Original mapping of supplementary onto primary requirements.

PF1 PF2 | PF3 | PF4 | PF5 | PF6 | PF7
S1 X X
S2 X X X X X
S3 X X X X X
S4 X X X X X X
S8 X X X X
S12 X X X X
S13 X X

primary functions only, e.g. standardization of only the interface, or protection of only
the data a finer granularity of functionality will help us split and re-group the func-
tions later on. The next step in the mapping process would be to split up the PFs to
achieve a more exact mapping, but that exercise would be too detailed for this thesis.

A number of grouping strategies present themselves, but let us first look at the
glaring in-group conflict concerning privacy versus verifiability and provability in the
group PF1+PF6. According to NFD, we split the group to resolve the conflict. Clearly,
if all data on which the charge is based are communicated to the tax office, the privacy
requirement is violated. The objective is to split PF6 in such a way that only less
privacy-sensitive data are communicated and simultaneously maintain the verifiability.
After checking back with the stakeholders for the business-need behind PF6, it turns
out that we can split as follows

Fé6a At least once every month in which 1000 kilometers has been driven or at least
once per elapsed year, whichever comes earlier, the total charges and the total
distance per tariff shall be communicated to the tax office.

F6b Spot checks: a travelling vehicle shall be able to answer challenges made by
roadside-enforcement equipment by transferring all currently measured data and
the current tariff table.

F6c On request by the driver, the system shall communicate all data used to calculate
charges to him or her.

F6a is sufficient to fulfill PF6’s underlying need; F6b is a functional solution to S2,
and F6c is a functional solution to S3. F6b adds a short-range communication function

5The presence of supplementary requirements that apply to data elements or storage is quite common
in our experience; these requirements often lead to special data storage components, especially if they have
high priority.
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Table 2.2: Second iteration mapping of supplementary onto primary requirements.

PF1 PF2 | PF3 | PF4 | PF5 | F6a | F6b | F6c | PF7

S1 X X X

S2 X X X X X X

S3 X X X X X X

S4 X X X X X X X X
S8 X X X X X X
S12 X X X X X X
S13 X X X X

to the Mobimeter, which falls under the re-usability and standardization requirements
S8, S12 and S13. This analysis leads to a new mapping table.

Table shows the SR/FR mapping after splitting PF6. The conflict between S1
and S2 is now isolated in component F6b, the spot check function. This reflects the
issue that privacy-sensitive data are present in the spot-check equipment. We put this
conflict aside as a risk that will be managed by a protocol surrounding the management
of these data: how long they may be stored, to what purpose, etc.

Let us now look at grouping criteria. According to the stakeholders, security, pri-
vacy and viability through re-usability are the most important supplementary require-
ments and in that order of priority. The security requirement S4 groups the associated
data of all functions except the driver display, which basically means that the Mobime-
ter should contain a secure data storage component or “trusted element” that all KMH
functions should have access to. Privacy requirement S1 no longer applies to F6a, since
we split off the data from which the mobility pattern can be deduced. So S1 now groups
PF1, F6b and F6c. S1/F6b becomes the basis for storage requirements on the roadside
spot-check system, and the PF1/F6c¢ group leads to a subsystem called the “user log”.

Finally, the viability and re-usability requirements S8 and S12 group the commu-
nications functions of F6a/b/c and PF7, the display of PF3 and the vehicle localization
of PF1 into a subsystem called the “In-vehicle Telematics Services platform”. This
platform is designed to have standardized interfaces (S13) both to the KMH-specific
part of the in-vehicle equipment and to any additional (optional) service-related com-
ponents such as a navigation system. It gives access to services like GPS localization
and long-range and short-range digital communication. The final system decomposi-
tion is shown in Fig.[2.5] In the final version, the localization function was separated
from the ITS platform in order to fulfill an additional reusability requirement on GPS
equipment, which was already supplied in some cars.
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Figure 2.5: Mobimeter architecture.

2.7 Conclusions and Discussion

In this chapter, we have presented the Non-Functional Decomposition (NFD) model as
a technique to bring more clarity and structure in the mapping of requirements onto a
solution architecture. The key of our technique is to split the requirements into primary
and supplementary requirements, and to create a mapping between those categories.
The NFD process helps in optimizing the structure of the solution for all supplementary
requirements, including delivery and secondary functional requirements. NFD adapts
the solution structure to the requirement conflicts in the solution and isolates conflict-
ing requirements in subsystems that can then be individually optimized by applying
process, structural or functional solution strategies of which examples were presented.

The PSO product line was presented as a case study of the application of NFD. The
main result here was a well documented traceability between supplementary require-
ments and solution decomposition design decisions. This traceability supported the
project team in communicating to the stakeholders the effects of their stated require-
ments, and the rationale behind the main design decisions.

The KMH project was used as another case study, where we have indicated how
the Mobimeter architecture as it was published, can be reconstructed with the NFD
model. The examples of resolving in-group conflicts and grouping functions according
to supplementary requirements were given to show the application of the method and
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principles of NFD.

The validity of the observations on architecting is not only confirmed by our daily
work, but can be easily verified by evaluating successful architectures like client/server
or n-tier architectures. The components in these architectures all differ in their supple-
mentary behavior, and display specific geographical accessability, modifiability, effi-
ciency or portability attributes.

Of the existing requirements engineering literature, a large part focuses mainly
on obtaining and maintaining the right requirements [Robertson and Robertson, [2006|
Wiegers|, 2003|, Jackson, 2001}, van Lamsweerde, [2009]. Decomposition is important
in these approaches, but applies to the structure of the requirements, rather than the
structure of the solution. In we list a number of existing approaches in literature
for deriving a solution’s architecture from its NFRs[|[Boehm and In} 1996, |Bosch, [2000,
Chung et al.l 1999, Bass et al., |2003} |Gruenbacher et al., 2001]. As mentioned be-
fore, these approaches all rely on a pre-existing catalog of strategies, called by various
names. NFD adds to these approaches a common rationale behind the strategies: a
rationale based on the principle that conflicting NFRs can be dealt with by separating
the functions that they apply to in the solution structure.

We view NFD as a framework that uses the observations made in to improve
the architecting process. These observations are not new, we believe they have always
been implicit in the work of experienced designers and existing patterns and tactics.
By making them explicit, NFD makes the architecting process of transforming require-
ments into solution design more reproducible, more transparent and more reliable. It
also reveals rationale behind existing architectural patterns and tactics, and can be help-
ful in developing new patterns and tactics to deal with conflicting NFRs. Future work
is in further application of NFD in actual technically complex projects, and in the ex-
ploration of other areas in which it could be deployed.
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Dealing with Non-Functional
Requirements across the Contractual
Divide

Agreement on Non-Functional Requirements between customer and supplier is crucial
to a successful IT solution delivery project. In an ideal world, stakeholders and design-
ers cooperate to achieve their common goals in a win-win situation. In a commercial
setting, however, one dominant feature often introduces powerful forces from outside
the technical realm. That feature is the customer/supplier relationship, usually formal-
ized in bidding rules or as a delivery contract. Formal customer/supplier relationships
often place severe limitations on information exchange between stakeholders and de-
signers. In this chapter, we explore the effect of limitations on the process of optimal
quantification of Non-Functional Requirements, and explore a number of avenues to
deal with them.

3.1 Introduction

In the commercial setting of bespoke system development and integration projects,
customers and suppliers embark on a quest to converge to a point where requirements
can be agreed between them. Starting points on this quest are the customer’s needs and
the supplier’s capabilities to meet those needs. Agreeing on functional requirements
is usually the first step. The harder part is agreeing on non-functional requirements,
which are more tightly tied to the architecture. One of the aspects that get in the way of
a proper integrated approach to develop NFRs and Architecture is the formal character
of the client/supplier relationship. This formal character is expressed in bidding and
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tendering rules in the pre-contract stage, and in the contract itself after that. The formal
representation of NFRs in these situations is often a number, especially when they refer
to solution quality attributes: a quantified NFR. The process of getting to these numbers
is called NFR quantification.

3.1.1 Requirements and architecture in client/supplier situa-
tions

Traditionally, designing a solution to fit stakeholders’ needs is done in two phases:

RE : Requirements Engineering expresses the needs of the stakeholders in a set of
Requirements (FRs and NFRs).

AD : Architectural Design finds the optimal solution to address the Requirements, and
expresses the solution in a Solution Architecture.

In the commercial setting of fixed price IT projects, Requirements Engineering is
done by the customer, and Architectural Design by the supplier. After RE, the customer
invites a number of potential suppliers to bid for the privilege of supplying a solution
that fulfills the Requirements. This invitation is usually called Request for Proposal
(RfP) or Invitation to Tender (ItT); we will use the term RfP. After receiving the RfP,
the candidate suppliers will perform enough of the Architectural Design to be able to
calculate the cost and time needed to deliver the Solution within a reasonable margin
of error.

As stated in Chapter [} NFRs are widely seen as the driving force for shaping IT
systems’ architectures [Mylopoulos| 2006} |Chung et al.,|{1999| |[Paech et al., 2002} Bass
et al., [2003]]. In other words: of all the Requirements in an RfP, the NFRs have the
biggest role in the Architectural Design. In Chapter[2] we have discussed various exist-
ing approaches to derive Architectural Design from NFRs, and we presented our own
approach to do the same. However, as already noted by [Boehm and Bose, |1994], the
notion that an architecture can be derived from requirements in one go is an oversim-
plification. Architecture and requirements are so closely related, that many aspects
of requirements engineering can only be addressed properly if the architecture is de-
veloped at the same time. This point is made particularly eloquently in [Paech et al.|
2002], which pleads for a tightly integrated approach for Functional Requirements,
Non-Functional Requirements and Architecture. In our experience such an integrated
approach is indeed necessary, but it is particularly difficult to achieve in the type of
fixed price tendering situation described above. This is due to the traditional strict
separation of roles in the tendering process, a separation that is mandated by law [US
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Government, 2005} [European Commission, [2004] for many government related orga-
nizations.

In this chapter, we will first present some real-life examples of the issues related
to NFR quantification in a commercial setting. We will then look at the problem of
NFR quantification from a number of perspectives. We will see how the tendering
process interferes with proper NFR quantification, and discuss ways of dealing with
this interference.

3.2 Real-life Issues Dealing with NFRs

Sometimes NFRs are explicitly tied to RfPs or delivery contracts; sometimes they are
only implicitly mentioned, or ignored altogether. Either way, their impact is significant
in all but the smallest projects. Conflicts between customer and suppliers can often
be traced back to NFRs. Even in conflicts that revolve around the delivery of certain
functionality, the delivery is often delayed by performance or security requirements
related to that functionality.

This section presents some typical anonymous real-life experiences and dilemmas.
The cases are used for illustration in subsequent sections.

3.2.1 Case #1: the difficulty of communicating NFRs

A customer in the financial services market invites tenders to deliver a bespoke solution
to support a funds collection process. NFRs are not stated by the customer in the ten-
der requirements documentation, and are commensurately not addressed by the (sub-
sequently winning) supplier. At the outset of the project, an experienced engineer em-
phasizes to the project manager the importance of formally agreeing performance with
the customer, for fear of otherwise failing to secure acceptance. The project manger
agrees and sanctions work to commence on defining a non-functional requirements
specification that the customer will be asked to approve.

The engineer and his team spend a significant amount of time producing a spec-
ification of performance requirements for each of the functional transactions in the
system. The specification, due to the difficulties of precisely specifying such require-
ments, turns out to be large, highly technical and difficult to understand. The document
is presented to the customer for approval, who predictably does not understand it, and
engages an independent consultant to help him. The consultant spends a consider-
able time digesting the specification and the value of the requirements to his client, by
which time the delivery project is well advanced and the project manager is beginning
to panic. He convenes a meeting with the customer and his consultant to try to force
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agreement of the requirements, which fails as the consultant has advised his client that
the requirements as stated in the specifications are highly artificial, overly qualified
and of little real value. A protracted series of subsequent meetings fails to achieve
agreement and meanwhile the main development is nearing completion. The impasse
continues to the point that the project starts to incur significant financial loss.

3.2.2 Case #2: the unexpected cost of high availability

A bid team is responding to an invitation to tender a solution for providing administra-
tive support to the provision of key public services. The customer states that the solu-
tion must be highly available, stating 99.999% availability requirements with onerous
penalties on breach of the operational requirement. Considering the requested services
levels, the bid team embarks upon a process of crafting a solution architecture with
extreme high availability qualities throughout. The tender process allows little contact
with the customer to refine understanding of the customer’s stated requirements.

As the bid proceeds and the solution unfolds, it becomes evident that the apparently
necessary hardware and software infrastructure costs are very significant. However, the
bid team is convinced that this is justified and that all competitors in the tender will be
responding similarly. Costs continue to spiral as the impact of the highly available solu-
tion on envisaged transactional performance becomes apparent and ever more capable
infrastructure is included to compensate.

In the later stages of the bid process and pre-contract award, the bid team is invited
to present the solution to the customer: the customer is aghast at the elaborate nature
of the solution and the likely price to deliver it. The customer decides to suspend
the tender having not received any affordable solution. The customer and all bidding
suppliers have spent considerable resources and cost, which could have been avoided
by more communication about impact of the availability requirement throughout the
tender process.

3.2.3 Case #3: the danger of ignoring unspecified NFRs

A very large project is underway to deliver a transaction processing system for a prop-
erty services company. Within the contract, the specification did not include any re-
quirements for performance, availability or any other NFR. In hindsight, the specifica-
tion did not accurately define the quantity of information to be processed or accurately
express the complexity of the business process the client actually needed. The project
begins work and some members of the team begin to voice concerns amongst them-
selves about the growing complexity of the functional requirements and growing data
requirements, and in particular the potential for this combination of factors to adversely
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impact transactional performance experienced when the functions are implemented,
fearing that the customer will find the solution to be unacceptable. These concerns are
not raised with the customer. The team attempts to gain acceptance of the solution on
functional grounds only, strictly fulfilling the contractually agreed specifications.

At the stage of formal acceptance testing, the customer states that he is very un-
happy with the performance of the application and says that it will not viably satisfy
his needs. The project team points out that no contractual obligation exists to require
the supplier to deliver in-line any particular non-functional requirements. The customer
steadfastly refuses to accept the system and stalemate is reached - a situation that could
have been avoided by recognizing and communicating about the implicit performance
requirement at an early stage.

3.2.4 Dilemmas for suppliers

In our experience, there are two flavors of dealing with NFRs in RfPs: they are either
not mentioned at all (Cases #1 and #3), or they are present as hard, quantified require-
ments (Case #2), often poorly and ambiguously stated. Both flavors lead to dilemmas
when writing a proposal in response to the RfP.

If an RfP contains hard-quantified quality attribute requirements for systems that
are newly to be designed, the dilemma is caused by the uncertainty in the cost of fulfill-
ing them. The level of uncertainty is often much larger than many stakeholders realize.
New architectural combinations may have to be tried out with highly unpredictable ef-
fects on a number of interacting quality attributes. In a tendering situation, there often
is no time to reduce the uncertainty by executing e.g. a proof of concept. This leaves
the supplier with essentially two options: either going along with the requirement and
taking on the full risk of the uncertainty, or offering a non-compliant solution - thereby
risking losing the job. This is essentially a regular risk management issue - except that,
as stated before, the risk in NFRs is that they can very considerably stress projects.

For quality attributes that are ignored in RfPs, the dilemma to the supplier is of a
different kind. Their professionalism leads them to take into account these attributes
even if no quantified NFRs are present, but how far should they go with this? Too
much attention may inflate the price, potentially causing the bid to be lost due to quality
attributes that are not even formally required by the customer. Too little may lead to
severe problems later on, because customers have expectations about quality attributes,
even if they are not explicitly quantified in the RfP (see Case #3). There are well-
documented court cases [RACV Insurance Pty Ltd v. Unisys Australia Ltd, 2001] that
show that suppliers have a duty of care in this area that can go beyond the contractually
explicit requirements.

NFRs, whether documented in the RfP or not, are a regular source of dilemmas for
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suppliers responding to RfPs. One sometimes gets the impression that the tendering
rules force customers to contract the supplier that has the lowest level of understanding
of the NFRs. A supplier that is insufficiently aware of the impact of NFRs will gener-
ally submit a lower priced offer, because other suppliers will calculate the proper cost of
addressing the NFRs, or the proper contingency needed to deal with NFR-related risks.
Of course, by the same token, the NFR-unaware supplier that wins the bid will sub-
sequently perform poorly in terms of quality attributes, and probably overrun delivery
time and budget once the NFR trouble has come to light. This impression is confirmed
by the example of the Dutch highway tunnel safety systems [Gram and Keulen, 2010].
The project was plagued by quality issues so severe that they caused years of delay.
The government committee that investigated the trouble reports that “at the time of
awarding the bid, it was known that the winning bidder scored quite badly on quality
[...], but the quality criterium weighed insufficiently to compensate for the low price.
The winning party, when asked, confirmed that, in their opinion, they could realize
the project.” [Gram and Keulen, 2010]. Due to European tendering rules [European
Commission, 2004], in this situation the customer would not even have been allowed
to award the bid to another supplier. This is a clear example of a supplier that won a
bid due to a lack of NFR-awareness combined with tendering rules.

3.3 NFR Quantification as an Economic Problem

NFRs in RfPs can be expressed to various degrees of (un)certainty. They can be doc-
umented as vague goals that still need to be clarified and disambiguated, like the soft-
goals of [Chung et al.l [1999]. They can also be expressed in quantified values. A
lot of literature is available on the benefits of quantifying NFRs. Crisply quantified
NFRs give architects a basis for their design decisions [Bass et al., 2003}, |Gilb, 2005],
allow architectures to be validated [Clements et al., [2002], and give testers and cus-
tomers a firm basis for acceptance testing [Pinkster et al.| 2004]. There is no dispute
that the most important quality attributes for a system should, at some point in time,
be quantified in terms of objectives, targets and eventually (acceptance) test criteria.
The ISO-25000 standard [ISO/IEC 25000, 2005] provides a model and metrics to do
so, and several approaches exist [Barbacci et al., 2003 |Gilbl [2005] as alternatives or
supporting processes for these standards.

From an economic perspective, NFR quantification can be seen as an exercise in
optimizing the value/cost ratio. Quantified NFRs have to be related to two economic
entities: the business value of the realized NFRs (quality attribute) to the customer,
and the cost to the supplier to realize the NFR (which in turn translates to price to
the customer). These relationships have been extensively explored by [Kazman et al.,
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2002] and later by [Regnell et al., 2008]] and [Berntsson Svensson, [2009]], and will be
explained briefly below.

3.3.1 Cost

Quality requirements tend to be very cost sensitive. This is because NFRs are fulfilled
through architectural strategies and choices, such as technology selection or layering
styles [Bass et al.l 2003]], which usually affect more than one Quality Attribute. These
architectural decisions are usually discrete choices between alternatives, each carrying
their own cost. These discrete choices cause discontinuous jumps in the relationship
between quality attributes and cost [Regnell et al., 2008], as illustrated in the “Cost vs.
Max Response Time” graph in Fig. [3.1(a). This relationship is called the “cost func-
tion”, and it is determined by the architectural decisions influencing the NFR. At the
time of writing the Request for Proposal, the cost function is actually unknown by the
customer because the architectural choices have not been explored in depth (this is the
job of the supplier). At bidding time, even the supplier usually does not have the time
to sufficiently explore the cost and time needed to fulfill NFRs. For newly designed
systems, figuring out the true cost function of NFRs often requires extensive model
calculations or architectural prototyping, for which the deadline of tender submission
is usually far too short. From the supplier’s point of view, the affordability factor is
acutely felt at bid stage, where the matter of competitive positioning is uppermost in
their mind.

3.3.2 Value

The business value of quality is often a highly intractable entity [Garvin, [1984], which
is illustrated in Case #1 above. Who can calculate the difference in value between a
system with 99.99% availability and one with 99.999% availability? The difference in
cost between the two may be prohibitive, as is illustrated in Case #2. The relationship
between quality attribute and value is called the “value function”. The value function
is typically stakeholder-dependent: e.g. improving performance by 50% at night-time
may be worth a lot to a particular department, while another department in the same
company derives more value from increased security resilience or maintainability. In
Fig. B.1b), an example of a relationship between business value and maximum re-
sponse time for a function is depicted. At bid time, this relationship is unknown to the
supplier: even if the response time requirement is quantified in the RfP, it is a single
number or a statistical spread of numbers, but rarely explicitly related to the business
value.
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Figure 3.1: Balancing cost and value
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3.3.3 Balancing cost and value

In Fig.[3.1)c), a Cost versus Value graph is derived from two underlying relationships
for a particular quality attribute: the Maximum Response Time (MRT) for a function.
Assuming that we want to maximize the Value/Cost ratio, finding the “sweet spot” in
this graph is easy: the point on the graph that has the steepest straight line to the origin
represents the optimal quantified NFR from an economic point of view. We have to
keep in mind, though, that the optimization we have performed here concerns only
one NFR. In reality, quality attributes are not orthogonal, so a full cost/benefit analysis
would require a more complex, multidimensional calculation involving cost and value
functions of all relevant quality attributes.

We now have a simplified method to quantify NFRs from an economic perspective.
Three things are essential to this method:

e Supplier knowledge of the NFR’s cost function.
e Customer knowledge of the NFR’s value function.
e Communication of said knowledge between customer and supplier.

Even though these essentials were derived from a simplified method, it is easy to

see that they are needed for any realistic approach to quantifying NFRs in a way that
makes economic sense.

3.4 NFR Quantification as a Negotiation Problem

All three of the essentials mentioned in the previous section are usually low at tendering
time, and significantly increase only after the contract has been signed:

Cost function knowledge increases by the research and experience of the supplier’s
delivery team.

Value function knowledge increases as end-users and business managers of the cus-
tomer organization get more involved in the execution of the project and see
more and more of the solution at work.

Communication between customer and supplier is severely restricted at tendering
time, and gradually opens up after contract signing, as mutual trust grows.

So the reasonable thing to do is to postpone the quantification of NFRs until after
the contract signing, when there is a relationship between customer and supplier that
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allows free exchange of information, and sufficient time to elaborate architectural al-
ternatives and establish their costs. However, uncertainty in NFRs implies significant
risk. It is natural for customers to seek as much certainty as possible that the system’s
quality attributes will fulfill their needs. The natural tendency therefore is to demand
a supplier’s commitment to fixed and quantified NFRs. This puts the supplier in a
difficult position: should they refuse to commit, or convert the inherent risk into a con-
tingency premium on top of the price? Either way may lead to not winning the bid, due
to either non-compliance or overpricing.

The risk and cost of NFRs often become objects of contract negotiations. This does
not help the three essentials mentioned above, as customer and supplier now have to
deal with negotiation tactics such as risk avoidance, divide and conquer, good guy/bad
guy, salami nibbling and slicing, on top of the technical difficulties of the engineering
process. Especially communication of cost and value aspects between customer and
supplier falls victim to the commercial necessity of playing ones cards close to the
chest.

We thus come to the core of the issue: from an engineering and economic per-
spective, NFRs should not be quantified until cost and value knowledge and cus-
tomer/supplier communication have been sufficiently established, which usually oc-
curs well after contract signing; on the other hand, commercial reality often demands
quantified NFRs committed to in the contract. In the next section, we will explore some
possible solutions to this issue.

3.5 Towards Solutions

In this section, we will present two approaches that can help alleviate the issues around
NFR quantification in a commercial setting: Requirements Convergence Planning and
Competitive Dialogue.

3.5.1 Requirements convergence planning

As stated in §3.2.4] when responding to an RfP containing hard-quantified NFRs, sup-
pliers with insufficient assurance that the requirements can be met basically have two
options:

Scenario A Respond “compliant” and deal with the resulting risk.

Scenario B Respond “non-compliant”, and offer an alternative for addressing the un-
derlying stakeholder needs.
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We asked the Logica Architecture Community of Practice for their views on these
scenarios in an open e-mail question, and received a dozen responses. The anecdotal
evidence in these responses led to the following:

In Scenario A, the risk is usually dealt with by increasing the contingency
budget, and mitigated by adding assumptions about the interpretation and
measurements of the quantified NFR. This leads to a higher price for the
customer, and a remaining chance that the supplier cannot achieve the re-
quired number (usually performance or availability). Failure sometimes
means penalties, sometimes budget and delivery time overruns. As one
respondent writes, “we usually get away with it”.

Most respondents prefer Scenario B, but indicate that only “mature” cus-
tomers will agree to it - customers who are aware of the intricacies of NFR
quantification. Scenario B requires room for discussion in which the sup-
plier can highlight to the customer that particular requirements can be very
expensive, and in which the hard requirement can be moved to a “target
value”. Instead of committing to the NFR value quantified by the cus-
tomer, the supplier will commit to a process to find a proper balance of
affordability, i.e. a number that is acceptable to the customer and achiev-
able at reasonable cost. This process is sometimes called “calibration” or
“clarification”.

The choice between Scenarios A and B is usually based on the following
aspects:

e Possibility to respond “non-compliant” without automatic disqualifi-
cation.

e Contractual conditions in case of not making the NFR (e.g. penal-
ties).
e Customer’s openness, awareness of NFR criticality and (assessed)

willingness to compromise on the NFR if the project runs into trou-
ble.

In recent years, we have started to call the process referred to in Scenario B Re-
quirements Convergence Planning. A Requirements Convergence Plan (RCP) is a plan
to quantify specific quality attributes that cannot be committed to at contract signing
time. This plan sets out a process of discovery and ultimately convergence on quan-
tification of performance or other NFRs with open collaboration from a customer. The
plan seeks to identify the most favorable balance of value and cost for performance
attributes, whilst implicitly reducing risk.
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Figure 3.2: Requirements Convergence Plan

One way of planning requirements convergence is by defining a process of incre-
mentally benchmarking architectural strategies and sharing the results of the bench-
marks with the customer. In this way the customer becomes fully aware of what can
feasibly be achieved within the cost constraints of the project, what risks this entails,
and the impact of delivery timescales of striving for a different balance.

The RCP concept is visualized in an example in Fig.[3.2] At contract signing time,
customer and supplier agree to the execution of the RCP, which in this case contains two
activities: a series of stakeholder workshops (e.g. Quality Attribute Workshops [Bar-
bacci et al., 2003])) to increase knowledge about the business value of the quality at-
tributes, and an architectural prototype to research what quality attribute level can be
achieved at what cost. Both customer and supplier are involved in both activities, stim-
ulating the flow of information needed to make the trade-offs. At the end of the RCP
period, the results of the stakeholder workshops and prototype evaluation are put to-
gether, and result in a firm quantified NFR. The supplier then commits to delivering the
solution fulfilling the NFR.

Requirements convergence planning can be called a two-stage commitment ap-
proach for NFR quantification: at contract signing, the supplier does not commit to
a quantified NFR, but to the execution of the RCP. At the end of the RCP, once a mu-
tually agreed balanced NFR is achieved, it is signed off and committed to. The details
of what happens in the RCP can be worked out on a case-by-case basis, as long as
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the three essentials mentioned in above are sufficiently addressed: cost function
knowledge, value function knowledge and communication between customer and sup-
plier about them.

Apart from getting close to economically optimized NFR quantification, a benefit
of this approach is that it allows the supplier to more keenly price its offer, as the
performance evaluation exercise is openly effort-boxed and no explicit commitment
is made to meeting specific NFRs at time of tender. The additional advantage to the
customer is that he is not paying for the possibly large contingency that a supplier
would otherwise have to load his offer with if this process were not to be followed.

This approach can not always be applied, since it requires an RfP that allows it to
be proposed. Also, the customer must be willing to give up the certainty of a com-
mitted and quantified NFR, in exchange for the probability of better value for money
spent on achieving NFRs. We have had some success with customers that welcome the
openness, feel that they are more likely to get what they need and feel that they will
not necessarily pay overly for it. Suppliers feel better in control of the risks, and feel as
though they are in a better position to satisfy the customer’s needs and make a profit.

3.5.2 Competitive dialogue

In 2004, the European Council added a new tendering procedure for the public sector,
called “Competitive dialogue”: a procedure in which any economic operator may re-
quest to participate and whereby the contracting authority conducts a dialogue with
the candidates admitted to that procedure, with the aim of developing one or more suit-
able alternatives capable of meeting its requirements, and on the basis of which the
candidates chosen are invited to tender. [European Commission, [2004] The Competi-
tive Dialogue is meant for “particularly complex contracts”. The aim of the dialogue is
to “identify and define the means best suited to satisfying their needs. They may dis-
cuss all aspects of the contract with the chosen candidates during this dialogue.” The
Competitive Dialogue tendering procedure contains significantly less restrictions in the
communication between customer and supplier at tendering stage. [US Government,
2005] contains a form of tendering called “Contracting by Negotiation”, which was
introduced in the regulations in 1997; like Competitive Dialogue, it has less communi-
cation restrictions than its counterpart, Sealed Bidding.

The fact that Competitive Dialogue allows a freer exchange of information between
customer and suppliers makes it more suitable than the previously existing procedures
for an integrated RE/AD approach in the IT solution domain. In practice, we see more
and more use of the competitive dialogue tendering procedure, but it is still only applied
in a minority of tenders: in 2011, only about 5% of the IT tenders Logica is interested in
follows the competitive dialogue procedure. The following anonymous example shows
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how such a dialogue is typically conducted:

A government ministry is looking to outsource the operation and mainte-
nance of its Enterprise Resource Planning (ERP) application landscape to
an IT service provider. The contract will be for 5 years, with a total con-
tract value in the order of magnitude of SOM€. A Request for Information
(RfT) goes out, after which a shortlist of suppliers is selected. An RfP
based on the competitive dialogue model follows 5 months after the RfL.
Candidate suppliers have two months to register for the bid. A six month
competitive dialogue phase then starts. During the competitive dialogue
phase, there are 8 workshops with each supplier. The objective of the
workshops consists of two business goals: cost reduction and flexibility
enhancement. Suppliers are asked to use the workshops to bring forward
ideas so that the ERP landscape can be operated and maintained in a less
costly and more flexible manner. Even though the original RfP contains
quite detailed requirements (including many NFRs), suppliers are actively
encouraged to think outside of the boundaries of these requirements dur-
ing the competitive dialogue phase. The requirements may be adjusted as
a result of the workshop outcome, in order to obtain the business goals.
Bidders taking part in the competitive dialogue get part of their costs re-
imbursed.

In this example, we see that the stakeholder workshop part of the requirements
convergence plan (§3.5.1)) is in place. In similar cases, suppliers are also asked to pro-
vide a proof of concept - analogous to the architectural prototype in the requirements
convergence plan. In other words, the four central ideas that make up requirements con-
vergence planning are used in practice in tendering situations: two-stage commitment,
stakeholder workshops, architectural prototyping and cusomter/supplier dialogue.

3.6 Discussion and Conclusions

In this chapter, we have presented some key issues related to NFR quantification in cus-
tomer/supplier relationships. Critical NFRs should be quantified, but we should beware
of premature quantification: as our real-life examples illustrate, prematurely quantified
NFRs can cripple projects and lead to diverging points of view in customer/supplier
relationships that are very hard to resolve.

We have concluded that, in most cases, it is impossible to find the optimal (best
value/cost ratio) quantification for important NFRs at tender time. Optimal quantifi-
cation requires sharing of information between customer and supplier, and it requires
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time to establish at least a reasonably proven estimate for the cost and value relation-
ships. One possible way to create better NFR quantification circumstances for cus-
tomers and suppliers is by means of a requirements convergence plan, which we will
encounter again in Chapter[J]as a practice in our solution architecting approach RCDA.
The European Union has a new tendering procedure that can be used for requirements
convergence, “Competitive Dialogue”.

With the ever growing complexity of IT systems and projects, predicting system
quality attributes becomes increasingly harder. Academia and industry are researching
ways to improve this predictability, but they cannot win this race while the complexity
of IT systems and projects increases at its current frantic rate. In the mean time, we
have to deal with an imperfect world. There is no unambiguous recipe for balancing
cost and value of quality attributes. Performing the balancing act while negotiating
a contract is fraught with uncertainty and danger, and can even lead to failure of IT
projects. The industry could benefit from a change in attitude that reflects this state of
affairs. Transparency and awareness between customers and suppliers about NFRs is
one part of that attitude; willingness to share the risk of unquantified NFRs is another.
Both transparency and risk sharing require a basis of trust to exist between customers
and suppliers in the IT industry. Without this trust, formal requirements documents or
contracts with precisely quantified NFRs will not help to guarantee success.

3.6.1 Related work

Negotiating and risk balancing

Viewing NFRs as a negotiation problem was first introduced in the WinWin Spiral
model of Barry Boehm et al [Boehm et al., {1995, Boehm and Inl [1996]. The WinWin
Spiral model is an iterative process of negotiating requirements between stakehold-
ers, based on win-conditions. More recently, [Fricker et al.| 2010] introduces the use
of Implementation Proposals to facilitate the negotiation and understanding between
stakeholders and architects.

The need for iterating between stakeholders to resolve requirements conflicts and
reach agreement is also described in the elaboration phase of the Unified Process
[Kruchten| |[1998]]. The issues that such elaboration iterations raise in relationship to
a tendering situation have been recognized by others, and Pitette proposes a solution
involving Progressive Acquisition [Pitettel |2001]]. Another discussion of the difficul-
ties of requirements specification in RfPs can be found in [Paech et al.]], which reports
on the experiences of a supplier in a tender process, identifies challenges and presents
some possible solutions for the supplier.

An extensive treatment of balancing the forces of risk and timing can be found
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in [Karolakl, [1995]].

(Un)certainty in requirements

For dealing with uncertainty in requirements, two approaches appear in literature: mod-
eling the uncertainty [Laplante and Neill, 2005, Noppen, |2007]], and tuning the devel-
opment process to better deal with change, which is one of the basic premises of the
Agile movement [Agile Alliancel [2001]]. The gradual increase of certainty during IT
projects (§3.4) is often visualized as a “cone of uncertainty” [Mcconnell, [1997]]. It was
first described in [Boehm, [1981] as the “funnel curve”.

[Davis, 2005]] gives lots of practical advice on how to prevent overspecification of
requirements. [Glinzl |2008] presents another economic perspective on NFR quantifi-
cation, focusing on the risk-based need to quantify versus the cost of the quantification
activities.

NFR trade-off approaches

We have seen in §3.3|that economic reasoning about NFR quantification requires knowl-
edge of the various architectural strategies that influence the NFRs. In other words,
we see that economic justification of NFR quantification requires knowledge of the
solution architecture. This confirms the need for an integrated approach for require-
ments engineering and solution architecture as identified previously by [Paech et al.|
2002]]. As stated before, the one-dimensional value/cost trade-off method presented
in is a simplification: we use it here because it allows simple reasoning about
quantifying an NFR, and clearly demonstrates the need for the “three essentials” for
proper quantification: cost knowledge, value knowledge and communication. Almost
the same method is used in QUPER [Regnell et al.l 2008]], who apply it in the context
of product roadmapping. Several approaches for multi-dimensional trade-off also ex-
ist, such as CBAM [Kazman et al.}2002]] and the NFR Framework [Chung et al.,|1999,
Lamsweerde, [2009]]. [Supakkul et al., |2010|] classifies such approaches as “selection
patterns” and compares a number of them. All of these are more sophisticated than the
method presented in but in the end all require the same “three essentials”.
[Fricker and Glinz, 2010] presents a case study analyzing and monitoring the hand-
over and negotiation process between stakeholder and architect. The case study reports
that a substantial part of the requirements change after the solution is presented to the
stakeholder: the intended solution changed the stakeholder’s position and triggered
substantial requirements modifications “to exploit strengths and account for weak-
nesses of a possible solution”. They report that “requirements understanding was per-
ceived good-enough only after negotiation”. Even though that study was not specifi-
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cally targeted at NFRs, the results strongly confirm our position that proper NFR de-
termination requires knowledge of the solution architecture.

[Gilbl 2005] appears to be a strong opponent to this position, advocating 'How
Good’ and "How Much’ before 'How’ as a matter of principle: “All performance re-
quirements and resource requirements must be stated before any design idea can be
fully and properly evaluated.” However, in the same list of principles Gilb also states:
“You cannot have correct knowledge of all the interesting requirements levels for a
large and complex system in advance,” indicating at least partial agreement with our
position. The Design Engineering process presented in [|Gilbl 2005] requires the same
“three essentials” of cost knowledge, value knowledge and communication to work, in-
dicating that it too would suffer from the communication limitations often encountered
in formal client/supplier relationships.

Summarizing, we have found no existing method in industry and literature that
allows proper quantification of NFRs in a situation with severe communication con-
straints between customer and supplier. The only way to address the issues highlighted
in §3.2]is to use contract negotiation models with less constraints, taking into account
the characteristics of NFR quantification.
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How Architects See Non-Functional
Requirements: Beware of Modifiability

This chapter presents the analysis and key findings of a survey about dealing with non-
functional requirements (NFRs) among architects. We find that, as long as the architect
is aware of the importance of NFRs, they do not adversely affect project success, with
one exception: highly business critical modifiability tends to be detrimental to project
success, even when the architect is aware of it. IT projects where modifiability is per-
ceived to have low business criticality lead to consistently high customer satisfaction.
Our conclusion is that modifiability deserves more attention than it is getting now, es-
pecially because in general it is quantified and verified considerably less than other
NFRs. Furthermore, IT projects that applied NFR verification techniques relatively
early in development were more successful on average than IT projects that did not
apply verification techniques (or applied it relatively late in development).

4.1 Introduction

As we saw in Chapter [T} NFRs represent a promising area for improvement, because
dealing with NFRs is viewed as a particularly difficult part of requirements engineer-
ing [Berntsson Svensson, [2009], and NFRs are widely seen as the driving force for
shaping IT systems’ architectures [Mylopoulos} 2006, |Chung et al., 1999, |Paech et al.,
2002, Bass et al.,|2003]).

One could say that architects are responsible for facilitating and realizing NFRs
during software development; they are the population that has to “deal” with NFRs.
Knowledge about how architects perceive and address NFRs can help IT organizations
improve their architecting practices and project success rates. Therefore, we set up a
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Figure 4.1: Conceptual model

survey among the members of Logica’s architecture community of practice to gather
such knowledge. The survey was aimed at investigating how architects perceive the
importance of NFRs, and which approaches they use to deal with them. We were also
interested to see whether we could link these findings with IT project success.

4.1.1 Conceptual model

The context of this study is IT Development Projects, defined as a project where an
IT system (application, software, infrastructure or other IT system) is designed, con-
structed and implemented.

The focus of the survey is on investigating the two relationships depicted in the con-
ceptual model, shown in Fig. 4. T] within the context of bespoke solution development,
and from the perspective of the architects. On the one hand, the more important non-
functional requirements are, the greater the implied risk to IT project success if they are
not fulfilled. On the other hand, several NFR approaches could help an IT project deal
with NFRs. To put it another way, the assumption is that I'T project success depends on
the importance of the NFRs and the application of approaches for dealing with NFRs.
We are interested in the following questions, which are an elaboration of RQ-1c:

1. How do architects perceive the importance of non-functional requirements?

2. Is there a significant relationship between the perceived importance of non-
functional requirements and IT project success?
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3. What approaches for dealing with non-functional requirements do practitioners
apply?

4. Is there a significant relationship between applying approaches for dealing with
non-functional requirements and IT project success?

A complicating factor in this model is the fact that we are by necessity looking at
all this through the architect’s eyes. Since the measuring instrument is a survey among
architects, we are not actually measuring the importance of NFRs, but rather the archi-
tect’s awareness of their importance. Architecture is a risk driven discipline [Fairbanks),
2010]. Awareness of a risk is a prerequisite to dealing with it. The more an architect is
aware of the importance of a requirement and its implicit risk of not being fulfilled, the
better he is able to address it. This mechanism works against the expected negative im-
pact of NFR importance on project success; it can even completely negate the negative
impact when the architect is fully successful in addressing the NFRs he is aware of.

4.2 Survey Description

The core of this study is an on-line survey that was conducted in 2010 among prac-
ticing architects. In addition to the survey itself, we organized two expert workshops,
consisting of a guided discussion with a select group of architecture experts in Log-
ica NL. One workshop was held prior to the survey itself, and its prime objective was
to align the survey’s contents with the vocabulary and way of working within Logica.
The second workshop was held after the survey, and its purpose was to enrich the initial
quantitative analysis results with qualitative knowledge from practicing architects.

The invitation to participate in the survey was sent out by e-mail to around 350
members of the Netherlands (NL) Architecture Community of Practice (ACoP) of Log-
ica. The ACoP consists of experienced professionals practicing architecture at various
levels (business, enterprise, IT, software, and systems architecture) in project or consul-
tancy assignments. The survey was closed after 16 days. By that time, 133 responses
were collected. After elimination of duplicates (1), incomplete responses (51) and re-
sponses from respondents that indicated they had not fulfilled the role of architect on
their latest project (41), 39 responses remained.

The survey consists of 23 questions divided over four sections. The first section
consists of questions that are related to the general characteristics of the latest com-
pleted project of the respondent. The second section asks the respondent to evaluate
the success of his or her latest completed project from a number of perspectives. Re-
spondents were asked to characterize their latest completed project in terms of NFRs
in the third section of the survey. The fourth section evaluates the approaches deployed
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for managing and dealing with NFRs in their latest completed project. The survey con-
cludes by presenting a number of statements about NFRs to the respondent. Examples
of what the survey questions looked like are shown in Fig. 4.2

4.2.1 Constructs

Considerable time and effort was spent on translating the key concepts of the concep-
tual model into operationalized constructs for use in the survey. The four key concepts
were Non-Functional Requirements, NFR importance, project success and NFR ap-
proach. Each of these concepts was first operationalized by looking for useful descrip-
tions and classifications in literature, which resulted in a draft survey. The draft survey
was then the subject of an expert workshop, in which it was discussed by eight archi-
tecture experts from Logica’s NL central technical unit (a kind of architecture board).
The constructs were the main topic of the workshop discussion - especially the use of
terms and models that would be commonly understood by the company’s architecture
community. The workshop outcome led to a modified, final version of the survey.

Non-Functional Requirements

The Non-Functional Requirements concept had to be made more specific. To be able
to analyze the impact of different NFRs, the NFR concept had to be classified into
subtypes. The problem of choosing a specific scheme to sub-classify NFRs lies in the
observation that even well-known classification schemes are terminologically and cat-
egorically inconsistent with each other [Chung et al., 1999, Mairiza et al.,|2010]]. Many
of the published classifications and definitions of NFRs have their own communities
in science and practice [Bass et al., [2003]. Since a significant number of architects
in Logica had been trained in the software architecture practices of the Software En-
gineering Institute, the six most common and important types of NFRs distinguished
by those practices were used in the survey. They all refer to quality attributes. Their
basic descriptions were taken from [Bass et al., 2003|], and were slightly enhanced
with examples by the pre-survey expert workshop to increase understandability in the
architecture community context:

Availability concerns system failure and its associated consequences. A system failure
occurs when the system no longer delivers a service consistent with its specifica-
tion. Such a failure is observable by the system’s users (either humans or other
systems). Reliability and recoverability are examples that belong to this type.

Performance events (interrupts, messages, requests from users, or the passage of
time) occur, and the system must respond to them. Performance is concerned
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Figure 4.2: Example survey questions
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with how long it takes the system to respond when an event occurs. Efficiency
and throughput are examples that belong to performance.

Modifiability considers how the system can accommodate anticipated and unantici-
pated changes and is largely a measure of how changes can be made locally,
with little ripple effect on the system at large. Adaptability, maintainability and
compatibility are examples that belong to this type.

Security is a measure of the system’s ability to resist unauthorized usage while still
providing its services to legitimate users. An attempt to breach security is called
an attack and can take a number of forms. It may be an unauthorized attempt to
access data or services or to modify data, or it may be intended to deny services
to legitimate users.

Usability is concerned with how easy it is for the user to accomplish a desired task
and the kind of user support the system provides. It can be broken down into the
following areas: learning system features, using a system efficiently, minimizing
the impact of errors, adapting the system to user needs, increasing confidence
and satisfaction.

Testability refers to the ease with which software can be made to demonstrate its faults
through (typically execution-based) testing.

NFR importance

How does one measure the importance of each type of NFR for a project? The experts
in the pre-survey workshop agreed that simply asking for the number of requirements
for each type of NFR is not valid. Intuitively, a project could have only a few perfor-
mance requirements that are nevertheless critical for the system. Conversely, it could
have more requirements of another type that are not critical. Furthermore, when you
measure the number of requirements for each type of NFR, you are only measuring
NFRs that were documented or elicited. The problem with NFRs often is that certain
NFRs are not documented or elicited. Therefore, the suggestion of the experts was to
use the concept of business criticality: a certain type of NFR is more important if it is
relatively more critical for the system and the business of the customer. This is a con-
cept that can be judged by the respondent in hindsight and is more valid than a simple
requirement count. An NFR is considered business critical when it is vital to the cus-
tomer’s business. The measure in which highly business critical NFRs are fulfilled has
a high impact on the system’s business value, and vice versa. Respondents were asked
to rate the business criticality of each of the six types of NFRs on a 5-point Likert-scale
(very low, low, medium, high, very high).

60



4.2. SURVEY DESCRIPTION

Project success

Project success has long been an active research topic. Traditionally, project success is
defined in terms of meeting time, cost and quality objectives [Pinto and Slevin, |1988].
More recently, it has been observed that projects can be successful in ways that cannot
be measured by these traditional criteria. Based on these insights, [Baccarini, |1999]
have constructed a conceptual framework for project success. Baccarini’s framework
distinguishes between Project Management Success, which includes the three tradi-
tional criteria of time, cost and process quality, and Product Success, which adds cri-
teria related to the product in a more strategic way, involving the product’s goal and
purpose and product satisfaction. Team Satisfaction in Baccarini’s framework can re-
late to both project and product; in our experience, this is especially true for architects,
who derive a large part of their job satisfaction from product quality. This observation
is confirmed by research by Linberg et al. [Linberg, |1999] and more recently by Pro-
caccino et al. [Procaccinol [2005]], who observe that developers’ perception of project
success often deviates significantly from the traditional criteria. Developers (including
architects) tend to judge success by criteria that extend beyond the project, sometimes
to the extent that even canceled projects can be successful in their eyes.

Our project success construct consists of five dimensions, that are designed to re-
flect the interests of the three main stakeholders (cf. [Dvir et al.,[2003]]). Meeting time
and budget corresponds to project success from a managerial perspective, as does ef-
ficient use of resources. Customer satisfaction is included to reflect the perspective of
the customers, and solution quality is the dimension that measures the success from the
perspective of the development team. Respondents are asked to rate the success of their
latest completed project in terms of these dimensions on a 5-point Likert-scale (very
unsuccessful, unsuccessful, neutral, successful, very successful). The overall project
success parameter is the sum of the responses for the 5 values. Cronbach’s « [Cron-
bach, |1951]] was used as a reliability test to assess internal consistency of this construct;
at o = .858, the construct proves to be valid (> .8).

NFR approach

The survey asks the respondents to indicate what approaches were applied for dealing
with NFRs during their latest completed IT project. Practitioners find dealing with
NFRs the most difficult part of requirements engineering [Berntsson Svensson, 2009].
The need for ways to manage NFRs has led several researchers to propose methods and
techniques for dealing with NFRs. A set of similar methods and techniques, related to
the same requirements engineering activity, that can be used to deal with or manage
NFRs (or requirements in general) is defined as an NFR approach.
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[Berntsson Svensson, 2009] and [[Paech and Kerkow, 2004 both provide classifica-
tions of activities aimed at dealing with NFRs. After merging these two classifications
and discussing the result in the pre-survey expert workshop, the following approaches
were included in the survey:

Elicitation interacting with stakeholders (customers, users) of a system to discover,
reveal, articulate, and understand their requirements.

Documentation requirements are written down in order to communicate them to stake-
holders (designers, developers, testers, customers).

Quantification NFRs are made explicit by giving them numbers on a measurable
scale. This makes the NFRs verifiable.

Prioritization assigning priorities among the different NFRs on the basis of their rel-
ative importance.

Conflict analysis identifying the interdependencies and conflicts among the NFRs.

Verification verifying that a system fulfills requirements, e.g. by prototyping, simula-
tion, analysis, testing or other means.

For a full operationalization of the NFR Approach construct, we not only need
a classification of sub-types, but also a way to measure their usage in the projects.
The simplest way to determine which of the approaches were applied would be to ask
respondents using a yes/no format. However, this is not sufficient. We want to be
able to distinguish between situations where the approaches were used early on in the
project (‘“on time”) and late in the project (“after the fact™). Several studies [Westland,
2002 |Grady},|1999] have pointed out that the relative costs of correcting (requirements)
errors increases during the development life cycle. In line with these findings, one may
expect that applying an approach later in the development life cycle is less effective; in
other words, the earlier an approach for dealing with NFRs is applied, the stronger its
positive impact on project success is expected to be. Therefore, respondents are asked
to indicate when the approaches were applied during the development life cycle for
each type of NFR on a 6-point Likert-scale. The Likert-scale represents five phases of
a generic systems development life cycle (requirements phase, design phase, realization
phase, testing phase, deployment phase) and a later/never option.
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Figure 4.3: Perceived business criticality of NFRs

4.3 Analysis of Survey Responses

In this section, we present the most interesting results of the quantitative analysis of
the survey responses. The outcome of this quantitative analysis was discussed by a
post-survey workshop with architecture experts in Logica NL. The results of this post-
survey workshop will be presented in the Discussion section of this chapter.

In Fig. 3] an overview is given of how the software architects rated the business
criticalities of the NFRs.

Auvailability and (to a slightly lesser degree) usability are generally considered
highly business critical, while modifiability and testability score relatively low. Per-
formance and security are somewhere in the middle.

Overall, the types of NFRs are almost never unimportant: very few respondents
rated the business criticality of any type of NFR as very low or low. This suggests
that each type of NFR has at least some basic level of business criticality in every
project. Therefore, each project involves dealing with every type of NFR at least to
some degree.

Table d.T|shows how many of the 39 architects applied each of the approaches, dif-

63



CHAPTER 4. HOW ARCHITECTS SEE NON-FUNCTIONAL
REQUIREMENTS: BEWARE OF MODIFIABILITY

Table 4.1: Application of approaches per NFR

availability performance modifiability security usability testability Total
elicitation 37 37 32 37 35 34 212
documentation 32 30 25 32 25 26 170
quantification 32 29 16 30 20 21 148
prioritization 26 27 18 24 19 17 131
conflict analysis 22 24 15 20 18 16 115
verification 29 33 18 33 28 30 171
TOTAL 178 180 124 176 145 144

Table 4.2: NFRs, correlation coefficient with IT project success

Type of NFR | Kendall’s 7 | Sig. (1-tailed)
Availability .086 NS
Performance -.181 NS
Modifiability -257 .023
Security .078 NS
Usability -.102 NS
Testability .095 NS

ferentiated per NFR. Again, modifiability scores low: almost all approaches are applied
less for modification than for other NFRs, especially quantification and verification.

4.3.1 Non-functional requirements and project success

Based on the theory described earlier, the expectation is that the business criticality
of NFRs is negatively correlated with IT project success, but that this effect may be
dampened by the architect’s awareness bias. For each NFR category, this hypothesis is
tested using Kendall’s 7 (one-tailed) and the level of statistical significance is .05 (o =
.05). The value of Kendall’s 7 ranges between -1 (perfect negative correlation) and +1
(perfect positive correlation).

A summary of the results is presented in Table Statistically, we should ignore
correlation coefficients where the significance Sig. > .05, which are indicated by
“NS” (not significant) in the table. Only Modifiability shows a significant correlation
between its perceived business criticality and project success. In other words, projects
where modifiability is highly business critical tend to be less successful than projects
where modifiability is less important.
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Table 4.3: Project success factors, correlation with business criticality of modifiability

Success Factor Kendall’s 7 | Sig. (1-tailed)
Time =212 NS
Budget -.219 NS
Efficient use of resources -.207 NS
Customer satisfaction -.324 .010
Solution quality -.233 NS

Table 4.4: Cross-table of business criticality of modifiability and customer satisfaction

Count Criticality modifiability
Very Low Low Medium High Very high
Customer Very Successful 5] 1
satisfaction Successful 1 -
Neutral * 4
Unsuccessful 1 2
Very Unsuccessful 1 2

Further analysis in Table [.3|shows that this correlation can be attributed largely to
one project success factor: customer satisfaction. This result is visualized in Table[4.4]
The figure shows a remarkably consistent level of customer satisfaction for all projects
where the architect judged business criticality of modifiability to be low or very low.
As business criticality of modifiability grows, customer satisfaction ratings are spread
over a wider range, and decrease on average.

4.3.2 Approaches and project success

The six requirements engineering approaches we consolidated from literature are ex-
pected to have a positive correlation with IT project success. For each identified ap-
proach, respondents had to indicate if it was applied and when it was applied during
their latest completed project. The earlier the application of an approach in the systems
development life cycle the higher the score, measured on a 6-point Likert-scale where
each rating represents a project phase (requirements phase, design phase, realization
phase, testing phase, deployment phase, later/never). The rationale behind this argu-
ment was described earlier. Statistical techniques are used to test the hypotheses and
the results are presented in this section.

A summary of the results is presented in Table [f.5]

As seen from the table, only applying verification is positively correlated with IT
project success.
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Table 4.5: NFR Approaches and their correlation coefficient with IT project success

NFR Approach | Kendall’s 7 | Sig. (1-tailed)
Elicitation .054 NS
Documentation .065 NS
Quantification .024 NS
Prioritization .057 NS
Conflict analysis -.128 NS
Verification 256 .014
257 (o)
[e] o

20

success
&
1

T T T T T
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Figure 4.4: Plot of the correlation between timing of verification (higher score corre-
sponds to earlier application) and project success
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The correlation between verification and project success is visualized in Fig.
The horizontal axis in this figure represents a score based on when verification was
applied, accumulated for all NFRs listed in the higher the score, the earlier
in the project verification was applied. There is a significant positive relationship be-
tween applying verification and IT project success, 7 = .256, p (one-tailed) < .05. In
other words, we find that projects where NFRs are verified in an early stage tend to
be more successful than projects where NFRs are not verified or only at a later stage
in the project. This is not surprising; it is more surprising that we did not find such a
correlation for any of the other approaches, which will be discussed further in the next
section.

4.4 Discussion and Related Work

In this section, we further discuss the results found above, and share the key contribu-
tions from the post-survey analysis expert workshop. We will also discuss threats to
validity, and relate our work to additional material found in literature.

4.4.1 Availability most business critical

In the perception of the architects responding to the survey , on average the busi-
ness criticality of availability is highest. Earlier studies found similar results. For
instance, in [Johansson et al.| 2001]] reliability was identified as the most important
type of NFR in software platform development. Furthermore, in [Leung, |2001] relia-
bility was ranked as the most important NFR and availability was ranked as the most
important sub-characteristic for intranet applications. These studies used the six quality
characteristics from the ISO/IEC 9126 standard as types of NFRs, where availability
is a sub-characteristic of reliability. Furthermore, their definition of reliability is very
similar to the definition of availability used in this research.

4.4.2 Non-functional requirements and project success

The results show that the perceived business criticality of modifiability is negatively
correlated with IT project success. In other words: on average, IT projects where
modifiability is seen as relatively important are significantly less successful than IT
projects where modifiability is considered to be relatively unimportant. This correlation
is largely due to the level of customer satisfaction.

The following three possible explanations for this phenomenon were generated by
the post-survey workshop with architecture experts:
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1. A high demand for modifiability might be an indication that the customer does
not know what he wants. This means that a customer that demands high modifi-
ability, is a customer that is more likely to change his requirements later on. A
development team is trying to hit a moving target in such a situation. This expla-
nation is in line with the leading role of customer satisfaction in the correlation.

2. Modifiability leads to complexity. Known techniques to realize high modifiabil-
ity (such as layering, late binding and parameterizing) quickly lead to increas-
ing complexity, with an adverse effect on budget and timescale. If this were
the case, projects where modifiability is highly business critical would be ex-
pected not only to be less successful, but also larger and more prone to budget
and schedule overruns. Thus, one would expect significant correlations between
modifiability and project size, time and budget success factors. None of these
correlations were found; in fact, some of the respondents that indicated low crit-
icality for modifiability were working in some of the larger projects compared to
other respondents. Thus, the survey yields no evidence supporting this theory.

3. Modifiability gets too little attention. This explanation appears to be confirmed
by the relatively low scoring of modifiability in terms of perceived business crit-
icality and application of techniques reported above. Expert workshop members
experienced multiple reasons for “underappreciation” of modifiability:

e modifiability is harder to quantify or measure, less “mathematical” than
other NFRs; even though there are well known modifiability related code
analysis metrics like cyclomatic complexity [McCabe, 1976, such metrics
are seen as only indirectly related to the actual modifiability business goals,
and easily “cheated”

e other NFRs have a more direct effect on the project’s business stakeholders
(end-users, managers), while modifiability is sometimes perceived to be-
come important only after the project is over - a dangerous view in light of
the research presented here

No correlation is found between the business criticality of the other types of NFRs
(availability, performance, security, usability and testability) and IT project success.
This can either mean that the negative impact of NFRs is too small to be measured in
a population this size, or that the dampening effect discussed before is in play: archi-
tects can only respond that NFRs are highly business critical if they are aware of this
business criticality at the time of the survey. If an architect is aware of an NFR’s busi-
ness criticality at the time of creating the architecture, this awareness normally leads
to addressing of the NFR in the architecture, thus reducing the risk to project success.
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The expert workshop produced anecdotal evidence confirming the second theory. For
example, Logica has a project unit that is specialized in highly reliable system con-
struction. Projects where availability is highly business critical get assigned to this
unit. This leads to economies of learning and thus more successful projects.

All this leads to the following conclusion regarding the link between NFRs and
project success:

As long as the architect is aware of the business criticality of NFRs, they do not ad-
versely affect project success, with one exception: highly business critical modifiability
tends to be detrimental to project success, even when the architect is aware of it.

4.4.3 Approaches and project success

The application of verification is positively correlated with IT project success. More
specifically: IT projects that apply verification early in the development life cycle are
significantly more successful than IT projects that apply verification late in the devel-
opment life cycle. Verification was defined earlier as: verifying that a system fulfills
NFRs, e.g. by prototyping, simulation, analysis, testing or other means. Although it
is quite trivial that verification techniques reduce errors, there are apparently obstacles
that prevent early verification of NFRs. This result indicates that practitioners should
spend effort to overcome those obstacles.

It is surprising that none of the other approaches were found to have a significant ef-
fect on project success. After all, to be able to apply verification, shouldn’t one at least
have elicited and quantified the NFRs first? When evaluating the operationalization
of the questions, some limitations come to mind. First, it might be more meaning-
ful to measure how a certain approach was applied instead of measuring when it was
applied. In the current situation, IT projects that very carefully elicited NFRs with
multiple stakeholders using a formal method are not necessarily discriminated from
IT projects where elicitation is informally applied in an ad-hoc fashion by a single
stakeholder; moreover, the approaches are not really orthogonal with respect to the de-
velopment phases. Second, the 6-point Likert-scale used is based on a general waterfall
systems development life cycle and does not map very well unto iterative development
methodologies. During the validation session, the experts judged that they were suf-
ficiently aligned with the majority of the projects carried out by Logica. However, at
least one respondent had trouble answering the questions about the application of the
approaches, because his projects always use iterative development. These limitations
mean we have to be careful interpreting this result, beyond that it is good to have some
statistical evidence that early NFR verification is correlated with successful projects in
at least one company.
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4.4.4 Threats to validity and opportunities for further research

A few important limitations of this survey have to do with generalizability. First, the
context of the research is architecture, since it has such a strong link with dealing with
NFRs. This was a conscious choice, but it does mean that all results are subject to the
perception of the projects’ architects. It would be interesting to also investigate the
impact of NFRs from other perspectives and compare the results. In particular, a study
that would be able to distinguish between NFRs’ business criticality and the architect’s
awareness of that criticality might shed more light on the material.

Second, the data was collected using respondents from a single organization. A
cross-organizational approach would have been preferred, but this was not feasible due
to practical limitations. Strictly speaking, the results are valid only in the context of
Logica. However, Logica has many similarities with other similar companies. More-
over, over half of the ACoP architects (see fulfil their roles on-site in customer
organizations; so the results represent a mix of experiences in Logica and its customer
base in the government, utilities, financial and other industrial sectors. Nevertheless,
some results could be specific to Logica, and cannot be generalized without further
research.

The measurement of the applied approaches was already mentioned as a limitation
of this study. This could be a reason why no significant relationships were found be-
tween applying the approaches and IT project success except for verification. A study
that focuses on measuring maturity of the applied approaches might be better capable
to differentiate successful IT projects from unsuccessful ones. Another recommenda-
tion for future research would be to use a different kind of measurement for project
success, e.g. including the actual customer and his evaluation of a project’s success.

Other suggested extensions to future versions of this research are:

e Extend the definition of business criticality (see §4.2.1) to the company devel-
oping the software, rather than only its customers, which might yield a more
balanced view on e.g. testability.

o Include Designing for NFRs in the list of approaches; this key activity of archi-
tects is left implicit in this survey, but making it explicit may yield additional
interesting results.

e Ask the architects when they became aware of the business criticality of NFRs,
to validate the conclusion at the end of
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4.5 Conclusions

We set out on this survey with the goal to investigate the awareness and handling of
non-functional requirements among architects, and their effect on IT project success
(research question RQ-1c).

The first part focused on trying to identify if certain types of NFRs have a relation-
ship with IT project success. In other words, are there under-performing IT projects
based on the types of NFRs they deal with? A significant negative relationship between
the business criticality of modifiability and IT project success was found. Therefore,
it can be concluded that IT projects where modifiability is relatively business criti-
cal perform significantly worse on average. Even though this result might be local to
Logica, it provides a warning to all practitioners dealing with IT projects with a strong
focus on modifiability. Aspects like quantification, verification and managing customer
expectations around modifiability might require additional attention, because it seems
that customer satisfaction especially is significantly lower on average in this type of IT
projects.

The second part views the research question from another perspective: do ap-
proaches for dealing with NFRs have a positive influence on IT project success? From
the results it can be concluded that the application of verification (starting as early as
possible during the software development life cycle) has a positive influence on IT
project success. In other words: IT projects that applied verification techniques rel-
atively early in development were more successful on average, than IT projects that
did not apply verification techniques (or applied it relatively late in development). As
said earlier, practitioners should be aware that the long term benefits of verification
outweigh the short term extra costs.
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Part 11

Establishing a Solution
Architecting Approach
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Case Study: Successful Architecture for
Short Message Service Center

In Part I of this thesis, we examined how non-functional requirements be handled to
improve the success of IT solutions and the projects delivering them (research question
RQ-1). In Part II, we will now turn our attention to research question RQ-2: estab-
lishing a solution architecting approach to improve an IT service provider’s success.
This chapter starts off Part I with a small case study. It presents and analyzes the key
architectural decisions in the design of a successful Short Message Service Center as
part of a GSM network.

5.1 Introduction and Requirements

In the early nineties, a Short Message Service Cente was developed according to
the specifications for text messaging embedded in the GSM standard [ETSI, [1995].
This chapter looks back at the conceptual design phase of the realization project. The
chapter is a practitioner’s report, analyzing the key architectural decisions and distin-
guishing factors that contributed to the system’s success.

The SMSC’s key requirements are listed below, according to the categorization pre-
sented in first the primary (functional) requirements, and then the supplemen-
tary requirements, divided in secondary functional requirements and quality attribute
requirements.

I'This system was developed and commercially deployed by CMG, later LogicaCMG Telecoms and now
Acision. In order to protect the commercial interests of the manufacturer, the descriptions have been left at a
reasonably high level of abstraction, and data are mostly not quantified.
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Figure 5.1: SMSC context.

Primary functional requirements

Fig. shows the SMSC system in its primary context. The main purpose of the
system is [PF1:] to pass messages between mobile telephones in a GSM network , and
from and to other systems [PF2:] outside of the GSM network. Messages that cannot
be immediately delivered are [PF3:] temporarily stored in the system.

Supplementary requirements

According to the classification in supplementary requirements consist of three
categories: Secondary Functional (SF) requirements, Quality Attribute (QA) require-
ments and Delivery requirements. For the purposes of this chapter, we only need to
discuss the key SF and QA requirements.

The major secondary functional requirements were that [SF1:] a record of every
message that has passed through the system is kept for billing purposes, and [SF2:]
there is an interface to monitor and operate the system.

The major quality requirements set by the customers centered around [QA1:] per-
formance of message throughput, [QA2:] availability of the messaging service and
[QA3:] reliability of message storage. [QA4:] Timeliness in responses to external sys-
tems was critical. With a view to productizing of the solution, the manufacturer added
requirements for [QAS:] extensibility and [QA6:] scalability of the solution.
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5.2 Key Architectural Design Decisions

In order to fulfill the requirements set out above, the architects made some design
choices that distinguished the system from other similar systems in three major aspects:
platform choice, storage strategy and interprocess communication.

5.2.1 Platform choice

The main choice to be made with respect to the platform for the SMSC was between
a traditional “telecom switch” platform and an IT platform. Even though the telecom
switch platforms were better rated in terms of performance [QA1], availability [QA2]
and reliability [QA3], IT platforms were deemed superior in terms of extensibility at a
reasonable cost [QAS].

At the time of the design of the SMSC, the most popular platforms for these kinds
of medium-high performance requirements were Unix environments. The development
team, however, also had ample experience with OpenVMS platforms. It was felt that
the OpenVMS platform would better be able to fulfill the timing requirements [QA4].

5.2.2 Storage strategy

The performance of the system [QA1] was important and was perceived to become
more important later on [QA6]. For this reason, it was decided to use a system where
messages were stored in memory and on disk in parallel. The permanent message store
mechanism is based on proprietary OpenVMS file I/O. If a more conventional storage
strategy would have been used, such as an RDBMS, the added resource usage needed
to perform the more complex file operations would have made it harder to fulfill the
performance requirements [QA1]. Thus, the chosen storage strategy provided a better
fit with the non-functional requirements.

5.2.3 Interprocess communication

A process architecture over multiple nodes was necessary to fulfill the performance and
scalability requirements [QA1,QA6], resulting in a need for transparent communica-
tion between processes (IPC) running on different hardware units. It was felt that using
the commercial-off-the-shelf IPC products available at the time would cause problems
fulfilling the performance and flexibility [QA5] requirements. The team decided to de-
velop a mean-and-lean transparent IPC itself. The resulting utility was christened VIQ
(Virtual Interprocess Queue).
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5.3 Conclusions and Discussion

In the years following delivery of the system to the first customers, demand for short
message services grew spectacularly. In the race to keep up with this growing demand,
performance and reliability turned out to be the main deciding factors. The product
quickly became the world’s leading SMS product in terms of number of subscribers
being serviced.

The major lesson we learned from this success story is to beware of fashion in
solution architecture. In the SMSC case, key architectural choices deviated from the
prevailing “fashion” at that time, because analysis indicated that the more popular prac-
tices were not the best choices to fulfill the key requirements of performance, timeli-
ness and reliability. The deviations turned out to be the key distinguishing factors in
the architecture, that led to a success story.

Practicing architects in our experience are often under pressure from managers and
customers to follow trends and fashions in system design. This phenomenon can partly
be attributed to personal risk management behavior: it is hard to blame a manager
for making a wrong decision if many others made the same wrong decision. We fre-
quently encounter the term “best practice” to rationalize decisions that follow trends
and fashions, often without a clear trade-off analysis as to why these practices are best
for that particular situation. For this reason, we prefer the term “best fit practice” to the
ubiquitous “best practice”.

Methods like the Cost Benefit Analysis Method [Kazman et al., 2002|] can help
architects to present the benefits of their choices in an objective way. This can be es-
pecially helpful when arguing choices that go against prevailing “fashion”. It should,
however, be kept in mind that the previously mentioned “career risk management”
argument for following trends and fashions is not necessarily invalid, and risk man-
agement related quality attributes can rightfully show up in architecture evaluations
[Clements et al., [2002].

This case presents an example of the benefits of an environment where architects
can argue their choices and priorities in an objective manner, and select practices that
best fit those priorities, rather than follow fashion. In this case, such an environment led
to a solution that was very successful in terms of the business goals identified in
particularly consistency in delivery and customer satisfaction. In subsequent chapters,
we will explore a number of factors that can contribute to such an environment, leading
up to the establishment of a successful solution architecting approach.
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The Influence of CMMI on Establishing
an Architecting Process

In 2006, we started out to create a generic architecting process for Logica. Since the
company had set an objective to achieve Maturity Level 3 of the Capability Maturity
Model Integration® (CMMI®), the process needed to comply with the relevant require-
ments set by the CMMI. This chapter presents the elicitation of such requirements, and
the resulting set of requirements. It analyzes their potential impact on generic archi-
tecting processes found in literature. It turns out that CMMI 1.3 is much stronger in
support of architecting activities than CMMI 1.1 (the version for which we have done
this analysis previously), but a few possible improvements remain.

6.1 Introduction

The setting of this chapter is the establishment of an institutionalized architecting pro-
cess in Logica. We had established that such a process would help control technical
risks in projects and products. At about the same time, a company-wide objective had
been set to achieve CMMI Maturity Level 3. This made it necessary to obtain insight
into the requirements that architecting processes need to fulfill in order to comply with
CMMI-DEV Maturity Level 3 [ﬂ The required analysis to obtain this insight was origi-
nally done using CMMI version 1.1 and published in [Poort et al.l|2007]]. This chapter
updates the analysis to CMMI version 1.3. There are now three CMMI constellations:
Development, Service and Acquisition. Our work pertains to CMMI for Development
(CMMI-DEV) [CMMI Product Team, [2010].

'CMMI-DEV Maturity Level 3 is mostly abbreviated to CMMI Level 3 in the rest of this chapter
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As references we have chosen two generic processes found in literature: Archi-
tecture Based Development [Bass and Kazman, [1999], because its scope is close to
our purpose and because it represents one of the better known approaches to architect-
ing in both industry and academia, and [Hofmeister et al., [2007], because their model
represents the commonalities between five industrial approaches.

First, in §6.2| we will present the organizational context and scope of a generic
architecting process. In the CMMI process areas that are relevant to such an
architecting process will be identified, and their requirements on architecting processes
extracted. In follows a discussion on the impact of the CMMI requirements on
generic architecting processes found in literature, and on the coverage of architecting
processes by CMMI. We will finish up with some conclusions and further work to be
done.

6.2 Architecting Process Context and Scope

6.2.1 Organizational context

The organizational context of this study was described in Chapter One of the
company’s Technical Board’s activities is controlling technical risks in the various IT
projects and products. It was felt that technical risk control could be enhanced by
developing and institutionalizing a process that would provide guidance for making
technical decisions: in short, an architecting process.

The Technical Board’s decision to institute an architecting process coincided with
the setting of a maturity objective by the company’s executive management. Encour-
aged by benefits experienced through local CMMI driven process improvement, man-
agement set an objective to achieve CMMI Maturity Level 3 for relevant organizational
units throughout the whole company. This meant that the architecting process to be de-
veloped would be subject to the requirements set by the CMMI.

6.2.2 Scoping an architecting process

The terms Architecture and Architecting are used in a great variety of meanings in the
IT world. Rather than risking a non-converging discussion on the meaning of the terms,
it was decided to scope the architecting process in terms of a set of business goals and
usage scenarios. For the purposes of this chapter, a high-level summary is provided:

e Business Goals The business goals for the architecting process were established
as Consistency in Delivery, Risk Management, Customer Satisfaction and Knowl-
edge Incorporation.
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e Usage Scenarios The process will be used for architecting activities in the fol-
lowing scenarios: Responding to a Request for Proposal (RfP), Software Devel-
opment Project, System Integration Project.

The business goals and usage scenarios were analyzed to determine the scope of
the architecting process. Apart from literature and the existing experience of the au-
thors, additional input for the analysis came from other stakeholders, specifically the
company’s sales community, quality assurance community and technical community,
obtained in a workshop.

The most significant elements in the outcome of this analysis are listed below.

e Analysis of the business goals and experience indicates that architectural deci-
sions are critical to the success of solutions. The process should therefore give
guidance on how to identify and make architectural decisions. This matches re-
quirements from CMMI about decision analysis and resolution, and with recent
publications about the status of architectural decisions [Bosch, 2004, Tyree and
Akerman, 2005, ivan der Ven et al., 20006].

e Many architectural decisions are made during the sales phase of projects; the
architecting process has to facilitate that process.

e A certain level of reviewing and control has to be facilitated by the process. This
is the convergence of the architecture assessment practices from literature [[Ob-
bink et al.,[2002} |(Clements et al.,2002]], and the responsibilities of the Technical
Board to control technical risks. Not only are reviewing and control necessary
parts of the process, it also has to be facilitated by a certain level of standardiza-
tion in documentation of architectures.

e The involvement of architects in the implementation phase of solutions is essen-
tial in order to assure that the selected solution will be adequately implemented
conforming to the architecture. The architecting process has to facilitate this.

e To contribute to the business goal of knowledge incorporation, the process should
support a structure for organizational learning from experiences. Learning points
may be both process-related (like good practices) and product-related (like good
architectural constructs).

e The objective is to implement a process that gives guidance on aspects of ar-
chitecting that are not specific to particular types of applications, e.g. not just
software development, but also system integration, ERP implementations, and
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Table 6.1: Scope of architecting process: high-level requirements.

rq.arch
rq.arch.decision
rq.arch.sales
rq.arch.doc
rq.arch.controls
rq.arch.conform

rq.scalable

rq.generic
rq.generic.tailoring
rq.accessible
rq.accessible.terminology
rq.cmmi
rq.learning.product

rq.learning.process

Give guidance on architecting technical solutions.

Give guidance on how to make architectural decisions.
Facilitate solution shaping during the sales process.
Standardize architectural documentation.

Give guidance on architectural controls.

Assure conformance with architecture during the imple-
mentation process.

Be scalable over business unit sizes (20 - 2000) and
project/programme sizes (80K€ - 500M€), and over a
broad range of size and complexity of solutions.

Be flexible / generic to work in diverse applications.

Be accompanied by a set of tailoring guidelines.

Be simple, accessible to all.

Use terminology familiar to company staff.

Be CMMI Maturity Level 3 compliant.

Bottle product experiences and make them available to ar-
chitects in a controlled manner.

Support a structure for organizational process learning.

embedded system development. This means its concept of “architecture” cov-
ers not only software, but the wider scope of solution architecture. For such
a generic process to be useable, it must be accompanied by a set of guidelines
for tailoring the process to the specific needs and characteristics of the usage
environment. This is also required by CMMI Generic Practice 3.1 “Establish a

Defined Process”.

In summary, we need an architecting process description that focuses on require-
ments analysis, architectural decision making, shaping, selection and evaluation of the
best-fit solutions, documenting and implementing architectures and controls like archi-

tectural governance and reviewing.

The scope of what is meant by an “architecting process” in this chapter is docu-

mented as a list of requirements’] in Table In §6.4.1} we will identify a number of
generic architecting processes in literature that are similar in scope.

2 A note on the tagging of requirements in this chapter: the reader will notice the use of mnemonic, hier-
archical tagging [|Gilbl|2005]). The use of dots indicates a hierarchical grouping, with an implicit traceability

to higher level requirements.
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The scope of the architecting process has been determined by the analysis of the
business goals and usage scenarios, with limited consideration of CMMI. We will now
focus on the influence of CMMI in more detail.

6.3 Architecting and CMMI

The Capability Maturity Model Integration (CMMI) is a process-improvement model
developed by the Software Engineering Institute (SEI) of the Carnegie Mellon Univer-
sity. It is scoped towards the development, acquisition and maintenance of systems or
services. CMMI-DEYV is the CMMI constellation intended for solution development.

The “staged representation” of the CMMI-DEV consists of five maturity levels.
With increasing maturity level, the process capabilities increase, resulting in a higher
probability that development or maintenance targets will be realized [|Gibson et al.|
2006]. Each maturity level consists of a number of process areas (PAs). Each process
area consists of a small set of goals followed by a collection of practices to be per-
formed in order to realize the goals. In order to satisfy a process area, an organization
must have visibly implemented the achievement of the process area goals in its pro-
cesses. Before goals can be considered to be satisfied, either the process area practices
as described, or acceptable alternatives to them, must be present in the planned and
implemented processes of the organization. [CMMI Product Team, 2010]] contains the
goals and practices for all process areas, accompanied by information to help CMMI
users understand them.

A process complies to a certain maturity level if the goals and practices of all pro-
cess areas of that level are satisfied. The process areas are customarily referred to by a
set of fixed tags; all level 2 and 3 process areas and their tags are listed in Table[6.2]

Goals and practices of a process area are divided into specific ones and generic
ones. Specific goals and practices directly refer to the process area itself, whereas
generic goals and practices represent mechanisms to institutionalize the specific goals
and practices. These practices are called generic because they apply to multiple process
areas.

CMMI Maturity Level 3 requires that for all process areas belonging to Level 2
and Level 3 a “defined process” is established. A defined process is tailored from the
organization’s “standard process’” according to a set of tailoring guidelines. In addition,
a defined process has a maintained process description, which implies that all (generic
and specific) practices are described. For more information, the reader is referred to
[CMMI Product Team, 2010].

This section starts with an exploration of what a CMMI Compliant Architecting
Process actually means. This is followed by a discussion on the use of architectural
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Architecting process
elements not covered by
CMMI level 3

CMMI Leyel 3 coverage of N CMMI Level 3
the architecting process

Figure 6.1: CMMI coverage of the architecting process.

Architecting process
scoped by Sect. 2.2

concepts in the CMMI. We then proceed to identify the process areas that have a sig-
nificant contribution to architecting according to the scope set out in §6.2.2] We call
this set the architecting significant process areas (ASPAs).

6.3.1 CMMI-compliant architecting process

The boundaries (scope) of the architecting process are determined in Because
of the structure of the CMMI, the practices related to this process may be distributed
over a number of process areas.

The CMMI Level 3 coverage of the architecting process can be obtained by analyz-
ing every Level 2 and Level 3 specific practice to determine whether or not the practice
is inside the scope of the architecting process. The generic practices of Level 2 and
Level 3 will always be in scope because they apply to all process areas. This analysis
will be performed further on in this chapter.

Fig. [6.1]illustrates the CMMI coverage of the architecting process. As can be de-
rived from the figure, the architecting process may include elements that are not cov-
ered by CMMI Level 3. These may for example be elements that are beyond the scope
of system development (like architectural roadmapping) or elements that are consid-
ered critical for a successful architecting process but cannot be found in the CMMI.

Summarizing the above information, it can be stated that a CMMI Level 3 compli-
ant architecting process:

e has a maintained description of all specific and generic practices that are in scope
of the architecting process (the square box in the figure)
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e has a maintained description of guidelines to tailor the process to the specific
needs and characteristics of the usage environment

e is consistently deployed inside the company in the context of the user scenarios

referred to in

The scope of this chapter is the determination of the practices that should be part
of the maintained description mentioned in the first two items. These practices will
be presented as a list of requirements imposed on an architecting process description.
In we will present the elicitation of these requirements, but first we will have a
more general look at the use of architecture concepts in the CMMI.

6.3.2 Architecture concepts in the CMMI

The word “architecture” is used extensively in the CMML. It appears in 12 out of 22
process area descriptions [CMMI Product Team), [2010]. The CMMI is a collection of
industry best practices and not a formal theoretical model. Effort was put in making
the model consistent and unambiguous, but many parts are still subject to different
interpretations.

Architecture itself is defined in the CMMI-DEV 1.3 glossary. Apart from its de-
fined usage, the word is also used in the concept of “process architecture” to denote
designing of company processes. This type of activity is outside the scope of this chap-
ter as defined in and we have filtered out this usage in our analysis.

Several architecture-related terms are defined in the CMMI glossary:

e Architecture is defined as: “The set of structures needed to reason about a prod-
uct. These structures are comprised of elements, relations among them, and
properties of both.” The glossary explicitly points out the role of quality at-
tributes in the context of architecture. This definition is quite close to our defini-
tion of solution architecture in §I.2.T)on page[3] except that it lacks the keyword
“fundamental”.

e Functional architecture is defined as: ‘“The hierarchical arrangement of func-
tions, their internal and external (external to the aggregation itself) functional in-
terfaces and external physical interfaces, their respective requirements, and their
design constraints”

e Definition of required functionality and quality attributes: “A characterization of
required functionality and quality attributes obtained through “chunking,” orga-
nizing, annotating, structuring, or formalizing the requirements (functional and
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non-functional) to facilitate further refinement and reasoning about the require-
ments as well as (possibly, initial) solution exploration, definition, and evalua-
tion.” This term refers to the beginning of architecting activities, and is within
the scope of our architecture process.

e Nontechnical requirements are defined as: “Requirements affecting product and
service acquisition or development that are not properties of the product or ser-
vice.” This term coincides with our definition of “Delivery requirements” in

2.3.2 (page[19).

o Quality attribute is defined as: “A property of a product or service by which
its quality will be judged by relevant stakeholders. Quality attributes are char-
acterizable by some appropriate measure.” The CMMI glossary explicitly links
quality attributes to architecture.

e Shared Vision is defined as: “A common understanding of guiding principles,
including mission, objectives, expected behavior, values, and final outcomes,
which are developed and used by a project or work group.”

One other architecture-related term is used extensively, but not defined: design.
Since a design is definitely a structure needed to reason about a product, one could ar-
gue that it falls under the CMMI definition of architecture. We include guidance about
design in CMMI-DEV in our analysis wherever it falls within our scope as defined in

These considerations show that a number of key concepts and terms relevant to
architecting are defined in the CMMI. The following section will discuss the identifi-
cation of the CMMI requirements on an architecting process.

6.3.3 Process areas relevant to architecting

Our approach to establish which requirements CMMI imposes on architecting pro-
cesses is to first identify which process areas are relevant for the process, and then to
extract requirements on the process from the practices in their descriptions. An analy-
sis of the CMMI Level 3 process areas against the architecting process scoped in
results in a set of process areas that have a direct and significant contribution to the ob-
jectives of this process. As discussed before, these process areas are called architecting
significant process areas (ASPAs).
The process areas of the CMMI are grouped into four categories:
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e Process Management. These process areas contain the activities related to defin-
ing, planning, implementing, monitoring, evaluating and improving all other pro-
cesses. The architecting process is subject to these process management process
areas in order to assure the required level of capability.

e Project Management. These process areas cover the project management activi-
ties related to planning, monitoring and controlling the development or mainte-
nance project. The architecting process is generally performed in the context of
a project.

e Engineering. These process areas cover the development and maintenance ac-
tivities that are shared across engineering disciplines (e.g. systems engineering
and software engineering). The architecting process falls mainly within these
process areas.

e Support. These process areas cover the activities that support all other process
areas like establishing measurement programs, verification of compliance, and
effective decision making. The architecting process is also subject to these pro-
cess areas.

Table[6.2]identifies the categorized set of Level 3 process areas and indicates which
process areas have been qualified as an architecting significant process area. It should
be noted that all process areas of the CMMI contribute to the objectives of the archi-
tecting process. Their contribution may be direct because the process area is actually
part of the architecting process, or indirect because the process area is establishing the
context and preconditions for a successful architecting process.

As stated before an architecting significant process area has a direct contribution
and this contribution should also be significant. This is the case for all Engineering
process areas, two Project Management process area (Risk Management and Require-
ments Management) and one Support process area (Decision Analysis and Resolution).
Risk Management, Requirements Management and Decision Analysis and Resolution
are actually part of the architecting process and contribute significantly to its objec-
tives. The architecting relevance of the set of architecting significant process areas is
shortly explained below. Where relevant, underpinning references to the CMMI text
have been added in [braces].

REQM Requirements Management. The role of architecting in Requirements Man-
agement focuses around the impact of requirements and their traceability to the
architecture. [Specific Practice (SP)1.1 Understand Requirements describes the pro-
cess of the acceptance of requirements according to objective criteria. “Consistent with
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Table 6.2: Categorized Level 2 & 3 Process areas and their architecting significance.

Tag ASPA
Process Management

OPF Organizational Process Focus

OPD Organizational Process Definition

oT Organizational Training

Project Management

PP Project Planning

PMC Project Monitoring and Control
SAM Supplier Agreement Management
IPM Integrated Project Management

RSKM  Risk Management Y
REQM Requirements Management Y
Engineering

RD Requirements Development Y
TS Technical Solution Y
PI Product Integration Y
VER Verification Y
VAL Validation Y
Support

CM Configuration Management

PPQA  Process and Product Quality Assurance

MA Measurement and Analysis

DAR Decision Analysis and Resolution Y
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architectural approach and quality attribute priorities” is an example criterion relevant
to architecting. It is also relevant to the impact analysis mentioned in SP1.3 Manage
Requirements Changes: “Requirements changes that affect the product architecture can
affect many stakeholders.” SP1.4 Maintain Bidirectional Traceability of Requirements:
traceability to architectural components is mentioned: “Work products for which trace-
ability may be maintained include the architecture, product components, development it-
erations (or increments), functions, interfaces, objects, people, processes, and other work
products.”. Traceability to architectural decisions is implied.]

RD Requirements Development. This process area is where functional and quality
attributes requirements are elicited, analyzed and established. Architecting is
important here both as a source of new requirements and as a means to struc-
ture requirements. [“Analyses occur recursively at successively more detailed layers of
a product’s architecture”. Specific Goal 2 Develop Product Requirements identifies the
selected product architecture as a source of derived requirements. SP2.1 Establish Prod-
uct and Product-Component Requirements prescribes to “develop architectural require-
ments capturing critical quality attributes and quality attribute measures necessary for
establishing the product architecture and design”. SP2.3 Identify Interface Requirements
prescribes the definition of interfaces as an integral part of the architecture definition.
SP3.2 Establish a Definition of Required Functionality and Quality Attributes prescribes
the identification of architecturally significant quality attributes. Other important archi-
tecting activities are impact and risk assessment of the requirements, mentioned under
SP3.4 Analysis and SP3.5 Validation. ]

TS Technical Solution. This process area covers the core of architecting: developing a
solution that fulfills the requirements. [TS specific goals are SG1 Select Product Com-
ponent Solutions, SG2 Develop the Design and SG3 Implement the Product Design. SP1.1
Develop Detailed Alternative Solutions and Selection Criteria prepares architectural de-
cision making by identifying alternatives and selection criteria. SP1.2 Select Product
Component Solutions and SP2.4 Perform Make, Buy or Reuse Analyses are about making
design decisions and documenting them, including rationale. SP2.1 Design the Prod-
uct or Product Component establishes the product architecture. It describes architecture
definition, driven by the architectural requirements developed in RD SP 2.1. It iden-
tifies elements of architectures, such as coordination mechanisms, structural elements,
standards and design rules. It also mentions architecture evaluations to be conducted pe-
riodically throughout product design. SP2.2 Establish a technical data package gives
guidance on where the architecture definition and the rationale for key decisions are doc-
umented. SP2.3 Design Interfaces Using Criteria supplies requirements to the interface
design process.]
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PI Product Integration. In this process area, the architecture is implemented in an ac-
tual integrated system and delivered. The architecting significance of the process
area lies in the involvement of the architect in the implementation phase, and the
architectural significance of the integration strategy [Product Integration has three
Specific Goals (SG): Prepare for Product Integration, Ensure Interface Compatibility and
Assemble Product Components and Deliver the Product. These goals should be achieved
in line with the product architecture.

VER Verification. Verification is an essential part of the architecting process because
its purpose is to ensure that the work products of this process meet the specified
requirements. Typical work products of the architecting process are the archi-
tecture and design documents and the architecture and design itself. Means for
verification may be peer reviews (for documents) and architectural assessments.
Verification activities should be prepared, performed, the results analyzed and
corrective actions identified.

VAL Validation. Validation is in fact a variant on verification but its objective is to
demonstrate that a (work) product fulfills its intended use when placed in its
intended environment (i.e. that it meets user needs). Regarding the architecting
process, the work products and means for validation are similar to verification.

DAR Decision Analysis and Resolution. Key to architecting is decision making [Bosch)
2004, Tyree and Akerman, [2005]. The DAR process area prescribes a formal
evaluation process for decisions of this kind: evaluation criteria should be estab-
lished, alternatives should be identified, evaluation methods selected, alternatives
evaluated and a solution selected. There should also be guidelines establishing
which decisions should be subject to this formal evaluation process. Many DAR
requirements overlap with selection practices in Technical Solution. [“When com-
peting quality attribute requirements would result in significantly different alternative ar-
chitectures.” is listed as a typical guideline for requiring formal evaluation.]

RSKM Risk Management. Better risk management is one of the business goals of the
architecting process. The inherent risk in a requirement is an important factor in
determining whether or not it is an architectural requirement, as will be explained
in Chapter [A requirement that, when not fulfilled, heavily “affects the ability of
the project to meet its objectives” (SP1.1 Determine Risk Sources and Categories), has
a good chance to be considered architectural. Typical architectural risk sources listed
are “uncertain requirements” and “Competing quality attribute requirements that affect
solution selection and design”. The RSKM process area prescribes how to deal with such
risks: risk parameters should be defined (SP1.2), a risk management strategy should be
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established (SP1.3), the process should give guidance on how risks are identified and
analyzed (SG2), and mitigated (SG3). Insofar as architectural requirements involve risks,
they should be treated the same way.]

An analysis of the texts of these architecting significant process areas yields the
requirements imposed on the architecting process by the CMMI. These requirements
are listed in Table @ In agreement with the nature of the CMMI, this table is effec-
tively a list of 73 best practices that support companies in creating and implementing
an architecting processﬂ These best practices are based on the informative text ac-
companying the architecting significant process areas in [CMMI Product Team) 2010],
so strictly speaking an architecting process that does not fulfill the requirements can
still be CMMI compliant, as long as the architecting significant process area goals are
visibly fulfilled by alternative practices. For the purposes of this analysis, however,
we have based the requirements on the architecting significant process area texts. The
tags in Table|6.3|allow traceability to the process areas that the requirements originated
from, and give the list a clear structure. The largest contributor is Technical Solu-
tion (TS) with 30 requirements, confirming our earlier observation that TS covers the
core of architecting. The next largest contributor is Requirements Development (RD)
with 21 requirements, indicating that an architecting process within our scope includes
a substantial amount of requirements development practices. All other process areas
provide only 4 or less requirements.

6.4 Discussion

In this section, we will discuss our results in conjunction with two generic architecting
process models found in literature, and we will discuss the coverage of architecting
processes in CMMI.

6.4.1 Generic architecting process models in literature

The CMMI imposes requirements on processes used by organizations. So if an or-
ganization were to institutionalize an architecting process based on a model found in
literature, what would that organization have to do to make their architecting process
CMMI level 3 compliant?

Although this analysis of CMMTI’s influence on architecting processes was based
on an initial scope set out in the context of a particular company setting, the results of

3CMMI version 1.1 yielded 67 [Poort et al.| 2007]), giving a quantitative indication of the improved
support for architecting in version 1.3
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Table 6.3: Requirements imposed on Architecting Process by CMMI.

rq.cmmi.reqm.arch
rq.cmmi.reqm.trace
rq.cmmi.rd.doc
rq.cmmi.rd.prio
rq.cmmi.rd.fun-arch
rq.cmmi.rd.recursive
rq.cmmi.rd.arch-req
rq.cmmi.rd.tech
rq.cmmi.rd.drivers
rq.cmmi.rd.part
rq.cmmi.rd.alloc
rq.cmmi.rd.derive
rq.cmmi.rd.if
rq.cmmi.rd.depend
rq.cmmi.rd.an
rq.cmmi.rd.an.key
rq.cmmi.rd.an.perf
rq.cmmi.rd.an.scen
rq.cmmi.rd.balance
rq.cmmi.rd.risk
rq.cmmi.rd.impact
rq.cmmi.rd.lifecycle
rq.cmmi.rd.assess
rq.cmmi.ts.alt
rq.cmmi.ts.alt.cots
rq.cmmi.ts.alt.techn
rq.cmmi.ts.alt.reuse
rq.cmmi.ts.alt.crit
rq.cmmi.ts.alt.crit.eval
rq.cmmi.ts.alt.issues
rq.cmmi.ts.alt.eval
rq.cmmi.ts.alt.acq
rq.cmmi.ts.alt.doc
rq.cmmi.ts.scenario
rq.cmmi.ts.design
rq.cmmi.ts.design.struct
rq.cmmi.ts.design.struct.if
rq.cmmi.ts.design.struct.id
rq.cmmi.ts.design.state
rq.cmmi.ts.design.if
rq.cmmi.ts.design.crit
rq.cmmi.ts.design.method
rq.cmmi.ts.design.standard
rq.cmmi.ts.design.fulfill
rq.cmmi.ts.doc
rq.cmmi.ts.doc.levels
rq.cmmi.ts.doc.views
rq.cmmi.ts.doc.impl
rq.cmmi.ts.doc.rationale
rq.cmmi.ts.if
rq.cmmi.ts.if.crit

rq.cmmi.ts.

Use architectural fit s criterion when assessing requirements and changes.

Maintain bility between requi and archi P and d

Translate needs, expectati and interfaces into documented customer requirements.
Establish and maintain a prioritization of customer functional and quality attribute requirements.
Develop a functional architecture.
Analyze requirements recursively.
Develop architectural requirements capturing critical quality attributes necessary for establishing architecture.
Develop requirements in technical terms necessary for product and product component design.
Determine key mission and business drivers, and determine architecturally significant quality attributes based on them.
Partition requirements into groups, based on established criteria, to facilitate and focus the requirements analysis.
Allocate i and design ints to product and the archi and to ional
Derive requirements that result from design decisions.
Identify interface requirements.
Establish and maintain relationships between requirements.
Analyze requirements.
Identify key requirements that have a strong influence on cost, schedule, performance, or risk.
Identify technical performance measures that will be tracked during the development effort.
Develop and analyze operational concepts and scenarios.
Use proven models, simulations, and prototyping to analyze the balance of stakeholder needs and constraints.
Perform a risk assessment on the requirements and definition of required functionality and quality attributes.
Assess the impact of architecturally significant quality attribute requirements on product and development costs and risks.
Examine product life-cycle concepts for impacts of tequlremenls on rlsks
Assess the design as it matures in the context of the
Develop detailed alternative solutions to address architectural requirements.
Identify candidate COTS products that satisfy the requirements.
Identify technologies currently in use and new pmducl ies for petiti ge.
Identify re-usable solution or i patterns.
Develop the criteria for selecting the best alternative solution, typically addressing costs, schedule, benefits and risks.
Based on the evaluation of alternatives, assess the adequacy of the selection criteria and update them as necessary.
Identify and resolve issues with the alternative solutions and requirements.
Evaluate alternative solutions against criteria.
Identify the product component solutions that will be reused or acquired.
Establish and maintain the documentation of the solutions, evaluations, and rationale.
Evolve operational concepts and scenarios.
Establish the product architectural design.
Establish product partition into components.
Identify and document major intercomponent interfac
Establish prod and interface i ifi
Establish main system states and modes.
Identify and document major external interfaces.
Establish and maintain criteria against which the design can be evaluated.
Identify, develop, or acquire the design methods appropriate for the product.
Ensure that the design adheres to applicable design standards and criteria.
Ensure that the design adheres to allocated requirements.
Document and maintain the design in a technical data package.
Determine the number of levels of design and the appropriate level of documentation for each design level.
Determine the views to be used to document the architecture.
Base detailed design descriptions on the allocated product- i chi
Document the key decisions made or defined, including their rationale.
Establish and maintain interface descriptions.
Design interfaces using criteria.

)l design adhering to design decisions and architecture.

lements.

, and higher level designs.

rq.cmmi.pi.seq

rq.cmmi.pi.if.review
rq.cmmi.pi.if. nanage
rq.cmmi.ver.prepare
rq.cmmi.ver.peer
rq.cmmi.ver.eval
rq.cmmi.ver.conform
rq.cmmi.ver.analyze
rq.cmmi.val.prepare
rq.cmmi.val.validate
rq.cmmi.val.analyze
rq.cmmi.dar.guid
rq.cmmi.dar.rank
rq.cmmi.dar.evalmethod
rq.cmmi.rskm
rq.cmmi.rskm.id
rq.cmmi.rskm.analyze
rq.cmmi.rskm.mitigate
rq.cmmi.gen

Guidance on determining the product integration sequence.

Ensure interface compatibility of product components, both internal and external.
Review interface descriptions for completeness.

Manage interface definitions, designs, and changes.

Prepare verification activities.

Perform peer reviews on architecture and design documents.

Perform architecture evaluations.

Verify architecture conformance of the implementation.

Analyze verification results and identify corrective actions.

Prepare validation activities.

Validate (part of) the architecture or design.

Analyze validation results and identify corrective actions.

Specify when a technical choice or design decision is architectural and subject to formal decision process.
Evaluation criteria for alternative solutions should be ranked.

Guidance on selecting evaluation methods for alternatives.

Guidance on handling architectural requirements as risks.

Identify architectural risks.

Analyze architectural risks.

Mitigate architectural risks.

Architecting process should be institutionalized according to CMMI's Generic Practices.
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the analysis should be relevant for other generic architecting processes. This section
explores that relevance. We examine the impact of the CMMI requirements derived in
this chapter on two generic architecture process models found in literature: one from a
technical report and one from a journal paper. Please note that the architecting process
models treated here differ significantly in scope: one focuses on design and analysis
and the other focuses on architecture playing a central role throughout the software
development lifecycle process. Also note that the models only roughly overlap the
architecting process scope set out in

Architecture-Based Development (ABD)

This is the generic architecting process as developed by the Architecture group at the
SEI It is described in [Bass and Kazman, [1999]], but aspects of it are present in most
of the publications of the SEI Architecture group (e.g. [Bass et al., 2003]]). It is used
as a reference here because its scope is close to that determined in and because
it represents one of the better known approaches to architecting in both industry and
academia.

The ABD process consists of six activities:

Elicit the architectural requirements.
Design the architecture.

Document the architecture.

Analyze the architecture.

Realize the architecture.

Maintain the architecture.

A

Table[6.4]shows how the architecting significant process areas map onto these steps.
In order to make the ABD process CMMI Level 3 compliant, each of these steps should
be implemented in such a way that the practices belonging to the architecting signifi-
cant process areas related to this step are satisfied. The following explanation applies
to this mapping:

e Requirements Development (RD) is not only mapped onto the Elicit step but
also onto the Design step. This is because the establishment of the “functional
architectural structure” as part of this step is actually a practice that is part of
RD.

e Verification (VER) activities start from the Design step because, as discussed
before, verification refers to the requirements produced during the Elicit step.
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Table 6.4: ASPAs Mapping onto ABD Steps.

’ \ Elicit \ Design \ Document \ Analyze | Realize | Maintain

REQM | X
RD X X

TS X X X X X
PI X

VER X X X X X
VAL X X X X X

RSKM | X X X X X X
DAR X X X X X X

e The ABD process defines that each step includes validation (VAL) activities. For
the Elicit step this refers to the validation of behavioral and quality scenarios.

e The Maintenance step is not well defined and scoped in the ABD process de-
scription. The existing text refers to means to prevent that the architecture drifts
from its original precepts due to poor maintenance. This may include activities
to extract the architecture of the as-built system, verify its level of compliance
with the architecture of the as-designed system and performing the required cor-
rective actions. In this respect, Technical Solution (TS) and Verification (VER)
should be mapped onto the Maintenance step.

e Since Risk Management (RSKM) and Decision Analysis and Resolution (DAR)
generally support all development and maintenance activities, they are related to
all steps of the ABD process.

Generalized software architecture design model

[Hofmeister et al., [2007] compare five industrial approaches to architectural design,
and extract from their commonalities a general software architecture design approach.
The approach involves three activities:

1. Architectural analysis: define the problems the architecture must solve. This
activity examines architectural concerns and context in order to come up with a
set of Architecturally Significant Requirements (ASRs).
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Table 6.5: ASPAs Mapping onto Generalized Architecture Design Model Activities.

’ \ Analysis \ Synthesis \ Evaluation ‘

REQM X

RD X

TS X

PI

VER X
VAL

RSKM X X X
DAR X X X

2. Architectural synthesis: the core of architecture design. This activity proposes
architecture solutions to a set of ASRs, thus it moves from the problem to the
solution space.

3. Architectural evaluation: ensures that the architectural design decisions made are
adequate. The candidate architectural solutions are measured against the ASRs.

It should be noted that this generalized model is of a higher level of abstraction
than the ABD process discussed before, and that its scope excludes the realization
of the architecture (it is design focused, as the name “generalized architecture design
model” implies).

Table [6.5] shows how the selected set of architecting significant process areas map
onto these activities. In order to make a process based on this generalized model CMMI
Level 3 compliant, each of these activities should be implemented in such a way that the
practices belonging to the architecting significant process areas related to this activity
are satisfied. The following explanation applies to this mapping:

e Unlike the ABD process, the generalized model excludes architecture realization
from its scope. For this reason, PI cannot be mapped to this model.

e The Architectural Evaluation activity ensures that the architectural design de-
cisions made are adequate. The candidate architectural solutions are measured
against the architecturally significant requirements (ASRs). Although the result
is called the validated architecture, this activity is verification (VER) in CMMI
terms because it refers to the requirements (ASRs) produced during the Archi-
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tectural Analysis activity. Validation (VAL) in CMMI terms (against the user
needs behind the requirements) is not part of the generalized model.

e Since Risk Management (RSKM) and Decision Analysis and Resolution (DAR)
generally support all development and maintenance activities, they are related to
all activities of the generalized model.

6.4.2 CMMI Coverage of architecting processes

As discussed in the architecting process scoped in §6.2.2] may include elements
that are not covered by CMMI Level 3. An analysis of the information in this section
against the CMMI yields the following elements that are not or only indirectly covered.

rq.arch.doc Standardization of architectural documentation: the activity to document
architecture and design information is part of the practices of Technical Solution
(TS), including what kind of information should be documented and guidance
on how it should be organized. In this way the CMMI guides standardization
of documents. In CMMI 1.3, guidance on architecture documentation is signif-
icantly improved over CMMI 1.1, including e.g. the use of views [ISO 42010,
2011].

rq.arch.conform Facilitating conformance to architecture during the implementation
process: The implementation phase as such is part of the practices of Techni-
cal Solution (TS) and Product Integration (PI), including references to Verifica-
tion (VER) in order to verify the implementation once it is finished. CMMI 1.1
did not provide any explicit support in ensuring that the architecture and design
will be adequately implemented during implementation; CMMI 1.3 gives more
guidance, including the use of architecture evaluations and the role of quality
attributes.

rq.learning.product Bottle experiences and make available for architects: the CMMI
has many process areas that deal with establishing an infrastructure for organi-
zational learning and improvement. Because the CMMI is a process framework,
this is strongly focussed on the process dimension (like the architecting process),
not on the product dimension (like architectural solutions). Only at Level 5 the
process area Organizational Innovation and Deployment (OID) addresses im-
provements on processes and (process and product related) technologies. Prod-
uct related technologies may also be interpreted as architectural solutions.

rq.arch.controls The requirements for controls like architectural governance and re-
viewing in CMMI is limited. Reviewing is covered in the Verification (VER)
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process area. Architectural governance, however, is largely missing. With ar-
chitectural governance we mean activities to manage architectural resources like
reference or enterprise architectures, or the architects themselves. The only ref-
erence made to resourcing architects is an example in Generic Practice 2.4: “Ap-
pointing a lead or chief architect that oversees the technical solution and has
authority over design decisions helps to maintain consistency in product design
and evolution.” The only type of architectural asset discussed is a software prod-
uct line’s core asset base. The lack of architecture-specific governance guidance
is a logical consequence of the fact that the CMMI model places such governance
activities in Generic Practices: they are abstracted away from specific application
areas.

rq.arch.sales CMMI-DEV offers no support for the sales process. Some examples in
[CMMI Product Team, [2010] refer to the existence of a contract, but the defini-
tion of Customer is limited to “The party responsible for accepting the product
or for authorizing payment.” As we have seen in Chapter 3] a sales process can
have significant impact on architecting activities. CMMI could be improved by
acknowledging this impact and giving guidance on it.

An informal visualization of the overlap between CMMI and the architecting pro-
cess is presented in Fig.[6.2] In this figure, CMMI process areas (circles) and archi-
tecting process requirements (ovals) are plotted onto the areas of Fig.[6.1] Elements in
the overlapping square area are covered by both CMMI and our architecting process
scope. Partly covered elements are plotted straddling the scope boundary lines.

A note on the meaning of the fact that some elements are not covered by CMMI.
We have not made any statement on the relative merits of these elements. One could
argue that this lack of coverage is a shortcoming of CMMI; conversely, one could argue
that, given the success of CMMI, how do we know that the elements that are covered
by CMMI aren’t by themselves good enough for an optimal architecting process? The
current state of affairs does not allow us to answer this question in a general sense; the
analysis in §6.3]merely indicates that in the current organizational setting, the elements
would contribute to achieving the business goals set.

6.5 Conclusions and Further Work

Our starting point in this chapter was a large IT company with a need to institutionalize
a generic architecting process that is compliant with CMMI Maturity Level 3. To
this end, we have studied and discussed the relation between architecting and CMMI,
resulting in the identification of process areas significant to architecting, and a list of
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Figure 6.2: CMML, architecting process and cross-section. See p[8§|
for PA abbreviations.
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requirements to make a generic architecting process compliant with CMMI Maturity
Level 3. Furthermore, we have compared our findings with two well-known process
models from literature.

We conclude that:

Architecture is a well-defined concept in the CMMI-DEV 1.3.

CMMI-DEV 1.3 provides considerable support in establishing an architecting
process. However, in some areas of architecting, the CMMI only gives weak sup-
port. The weaker areas are architecture governance, facilitating the sales phase,
and learning from architectural choices.

Besides these conclusions, other relevant findings worth mentioning are:

Although the scope of this chapter was limited to CMMI Level 3, an investiga-
tion of the level 4 and 5 process areas shows that none of these are Architecting
Significant according to our scope, with the possible exception of Causal Analy-
sis and Resolution.

Although architecting is generally viewed as an engineering activity, three pro-
cess areas outside Engineering are crucial to a good architecting process: Re-
quirements Management, Risk Management and Decision Analysis and Reso-
lution. This may not seem significant if the placement of these process areas
outside of Engineering is merely seen as a structural choice in the CMMI model.
Organizations should, however, not make the mistake of not applying these pro-
cesses to engineering, or not involving their (architecting) engineers in them.

CMMI 1.3 is much improved over version 1.1 in terms of support for architect-
ing.

Further work

As has been mentioned in the introduction to this chapter, the work described here was
done in the context of designing a generic architecting process for a large IT company.
This work gave rise to the remaining chapters in this Part.

The generalized architecture design model discussed in §6.4.1|returns in Chapter (]
where we will use it to illustrate the impact of our insight into the nature of architecture.

An architecting process that complies with a maturity model also begs a compar-
ison with Architecture Maturity Models (AMMs), such as the IT Architecture Capa-
bility Maturity Model (ACMM) developed by the US Department of Commerce [[US
Department of Commercel 2007]]. This comparison could be subject of a future analy-

Sis.
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Successful Architectural Knowledge
Sharing: Beware of Emotions

This chapter presents the analysis and key findings of a survey on architectural knowl-
edge sharing. The responses of 97 architects working in the Dutch IT Industry were
analyzed by correlating practices and challenges with project size and success. Im-
pact mechanisms between project size, project success, and architectural knowledge
sharing practices and challenges were deduced based on reasoning, experience and
literature. We find that architects run into numerous and diverse challenges sharing
architectural knowledge, but that the only challenges that have a significant impact
are the emotional challenges related to interpersonal relationships. Thus, architects
should be careful when dealing with emotions in knowledge sharing.

7.1 Introduction

In recent years, architectural knowledge (AK), including architecture design decisions,
has become a topic of considerable research interest. Management and sharing of AK
are considered to be important practices in good architecting [Lago and van Vliet, 2006,
Tyree and Akerman), 2005, |Clements and Shaw, 2006, [Farenhorst and de Boer, 2009}
Ali Babar et al.| [2009]. In our quest to improve solution architecting, we decided to
look into the relationship between architectural knowledge sharing and challenges in
solution delivery projects.

In the beginning of 2008, the members of the Logica Netherlands architecture com-
munity of practice were surveyed. The main reason for this survey was to establish
a baseline of current practice in architectural knowledge sharing (AKS), and to gain
insight into the mechanisms around AKS and related challenges in projects. These ob-
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jectives together amount to RQ-2c. The company was interested in these mechanisms
because they saw architectural knowledge management as a way to improve IT project
performance. The architects were asked about the content, manner, reasons and timing
of the AK sharing they did in their latest project; both obtaining and sharing knowledge
towards others. They were also asked about the challenges they faced. Furthermore,
they were asked to identify various properties of their latest project’s context, such as
project size and success factors.

Even though the architects surveyed all work for the same IT services company,
according to the survey 64% of them is doing so mostly at customers’ sites. As a
consequence, the survey results represent a mix of AK sharing practices in Logica and
in Logica’s customer base, which includes major Dutch companies and government
institutions.

7.2 Survey Description

The invitation to participate in the survey was sent out by e-mail to 360 members of the
Netherlands (NL) Architecture Community of Practice (ACoP) of the company. The
ACoP consists of experienced professionals practicing architecture at various levels
(business, enterprize, IT, software, and systems architecture) in project or consultancy
assignments. The survey was closed after 3 weeks. By that time, 142 responses were
collected. 97 respondents had answered the majority of the questions (93 had answered
all). The other 45 responses were discarded because no questions about AK sharing
had been answered. The survey consisted of 37 questions: 20 directly related to AK
sharing, and 17 related to the context in which the AK sharing took place.

7.3 Analysis

The analysis of the 97 valid survey responses was performed in three phases: first, the
current state of AK practice and challenges was established by comparing the respon-
dents’ answers to the 20 AK related questions. The analysis of four of these questions
is presented in three questions about AK practices and one about challenges in
AK sharing. In phase one, we examined the responses by ordering and grouping them.

Second, the relationship between the AK practices and challenges and their context
was analyzed by determining significant correlations between the AK-related responses
and some of the 17 context-related questions. The two context factors of project success
and project size are analyzed systematically in The result of phase two is a set
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of statistically significant correlations between responses to AK related questions, and
the size and success of the projects they pertained to.

In the third phase of the analysis, we reasoned and discussed about the results from
the first two phases. Based on reasoning, literature and the experience of seasoned ar-
chitects we deduced causality and impact mechanisms from the correlations, leading to
an observed impact model that is presented in Further discussions are presented

in {74

7.3.1 State of AK sharing practice

In this section, the responses to four of the AK related questions are analyzed, present-
ing the results of phase 1 of the analysis.
The four questions are:

e What type of architectural knowledge have you provided to or acquired from
Logica in your latest assignment?

e Why did you share architectural knowledge to your colleagues in Logica?
e When did you share architectural knowledge in your latest assignment?

e What challenges in architectural knowledge sharing did you experience in your
latest assignment?

Each question was provided with a set of predefined responses, determined in con-
sultation between two experienced architects and two researchers. There was also the
possibility for open text for missing answers. Respondents were asked to signify the
applicability of those responses on a 5-point Likert scale. Table[7.1]lists the predefined
responses to the questions, sorted by their average response values, which are listed
in the third column. Each question is further analyzed in the following subsections.
The two rightmost columns in the table list the Spearman’s p correlations between the
responses and the project context factors, which will be analyzed in §7.3.2] below. We
will start with the analysis of the responses without taking into account their contexts.

Architectural knowledge types

What type of architectural knowledge have you provided to or acquired from Logica in
your latest assignment?
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Table 7.1: AK related responses, average values and correlations

Architectural knowledge types ID avg prsucc p | prsizep
Standards; principles and guidelines s_akt_std 2.95 -0.062 0.010
Tools and methods s_akt_tlsmeth 2.80 -0.096 213%
Known and proven practices s_akt_prctc 2.71 0.135 -0.09
Product and vendor knowledge s_akt_prodkn 271 0.187 -.212%
Requirements s-akt_req 2.71 0.178 -0.079
Design Decisions including alternatives; assumptions; ratio- s_akt_.dd 2.69 0.1 -0.011
nale

Business knowledge s_akt_buskn 2.61 0.082 -0.037
Patterns and tactics s_akt_ptrn 2.46 0.044 0.023
Reference architectures s_akt.ra 228 0.074 -0.025
Legal knowledge s_akt_legal 1.79 0.097 0.117
AK Sharing Motivation ID avg prsucc p | prsizep
To build up my professional network s_akw_bldnetw 3.89 -0.116 0.087
T just like to share my knowledge s-akw_like 3.84 0.115 -0.075
Personal relation with colleague(s) s_akw_persrel 3.81 -.230%* 0.127
We all work for the same company s_akw_samecomp 3.77 0.109 -0.151
To enhance my professional reputation s_akw_reput 3.59 0.042 0.009
To contribute to the company’s business goals s_akw_compbusgls | 3.53 0.054 -0.002
T hope the favour will be returned some day s_akw_return 3.39 -.204% 0.201
I will be recognised as a contributor s_akw_recog 332 0.018 -0.079
I have received useful information from him/her s_akw_reciproc 332 -.223% 0.020
My management expects me to s_akw_mgtexpect 3.09 275%* -0.103
This may work in my favour at my next salary review s_akw_salary 2.69 0.002 -0.009
AK Sharing Timing ID avg prsucc p | prsizep
Whenever needed to solve problems s-akh_problems 3.48 0.153 -0.019
At the end of the project s_akh_prjend 3.41 0.027 0.012
When colleagues ask me to do so s-akh_collask 3.39 0.048 0.000
When management ask me to do so s_akh_mgtask 2.59 0.177 -0.026
Whenever I have time s_akh_freetime 2.57 -0.025 0.081
In the evening s-akh_evening 2.53 0.012 -0.056
Continuously during the project s_akh_prjcnt 2.34 .205% -0.159
AK Sharing Challenges ID avg pr succ p pr size p
Difficulty to achieve common understanding of requirements s_chl_requnders 3.82 -0.146 0.052
Difficulty to achieve appropriate participation from relevant | s_chl_stkhpart 3.66 -0.165 0.036
stakeholders

Diversity in customer culture and business s_chl_custdiv 3.61 -0.102 0.084
Poor quality of information s_chl_infqual 3.42 -0.11 0.105
Lack of information s_chl_inflack 3.31 -0.086 0.169
Inconsistency in information obtained from different sources s_chl_infincons 3.26 -0.114 0.146
Lack of time s_chl_time 3.25 0.06 -0.003
Delays in delivery s_chl_delays 3.24 -0.167 0.152
Difficulty of obtaining the appropriate skills within the | s_chl_skills 3.24 -0.115 0.138
project

Conflicts and differences of opinion s_chl_conflict 3.19 -.214% 0.176
Difficulty to organise effective meetings s_chl_effmeet 3.09 -0.153 0.211*
Lack of informal communication s_chl_lackinformal 3.01 -0.204 261°%
Inaccessibility of technical facilities s_chl_tinacc 2.99 -0.183 .280%*
Growing and shrinking of project population s_chl_growshrink 2.82 -0.117 357
Lack of trust between the project locations s_chl_sitetrust 2.77 -.272%* .265%
Project personnel turnover s_chl_persto 2.67 -0.116 307%*
No appreciation from (project or competence) management s_chl_mgtappr 2.60 -0.125 .230%
No willingness to share knowledge s_chl_nowill 2.39 -.224% .245%

* Correlation is significant at the 0.05 level (2-tailed); ** Correlation is significant at the 0.01 level (2-tailed).
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Figure 7.1: Architectural Knowledge Types

The distribution of the response values is visualized in Fig. With the exception
of reference architectures and legal knowledge, all types of architectural knowledge ap-
pear to be shared more or less equally. The least shared type of AK is legal knowledge:
over 75% indicate they do not or hardly share it with Logica.

AK sharing motivation

Why did you share architectural knowledge to your colleagues in Logica? The dis-
tribution of the response values is visualized in Fig. These data tell us that most
architects are either impartial to or agree with almost all motivation responses.

The only motivation that more architects disagree with (38%) than agree with
(17%) is salary. A related finding is the unpopularity of management expectation as a
motivator: 65% of respondents are impartial to or disagree with this motivator.

AK sharing timing

When did you share architectural knowledge in your latest assignment?

I'The figures in this chapter use the codified response IDs of the ID column in Table
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Figure 7.2: AK Sharing Motivation

The distribution of the response values is visualized in Fig. [7.3] By far the most
popular times to share AK are when problems occur, at the end of projects and when
asked by colleagues (other than managers); these three timings are all used often or
very often by over 50% of the architects. Almost 30% of architects indicate they never
share AK “when management asks me to do so”. We assume this is because in those
cases management does not ask - an assumption supported by the observation that there
is no lack of willingness to share (see Fig.[7.4). This fortifies our previous observation
about management expectation as a motivator.

AK sharing challenges

What challenges in architectural knowledge sharing did you experience in your latest
assignment?

The distribution of the response values is visualized in Fig.[7.4] The ordering of the
challenges by average response value in Table[7.T]allows an interesting categorization
of challenges with descending response values:

o Difficulty to achieve common understanding of requirements, participation from
relevant stakeholders, and diversity in customer culture and business (s_chl_req-
unders, s_chl_stkhpart, s_chl_custdiv) are all related to communication issues on
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Figure 7.3: AK Sharing Timing

group level (as opposed to personal level); this is the category of challenges that
most architects consider relevant in their latest projects.

e Poor quality, inconsistency or lack of information (s_chl_infqual, s_chl_inflack,
s_chl_infincons) are about issues with quality or absence of codified AK; this is
the second most commonly relevant category of challenges.

o Lack of time and delays in delivery (s_chl_time, s_chl_delays) are related to plan-
ning; this is the third most commonly relevant category of challenges.

o Other challenges all less commonly relevant than the three categories mentioned
above, are related to obtaining resources, interpersonal issues, teaming, continu-
ity and management.

In discussions about challenges in knowledge sharing, “knowledge is power”
is often cited as a reason for professionals not to want to share knowledge.
In our survey however, lack of willingness to share knowledge emerges as the least rel-
evant challenge, which the majority of architects find irrelevant, and which only 18%
find relevant. The next least relevant challenge is lack of management appreciation,
which only 21% find relevant. The unpopularity of this response suggests that, even
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Figure 7.4: AK Sharing Challenges

though we have seen in §7.3.1] that both salary and management expectations are at
the bottom of the list of reasons to share AK, architects are not actively discouraged
by their management’s apparent disinterest. Seeing that only 35% of respondents see
management as a motivator (Fig. [7.2) and only 20% see management as a challenge
(Fig.[74), one might conclude that architects do not see management as an important
factor in architectural knowledge sharing. As we will see in the rest of this chapter,
they might be wrong about this.

7.3.2 AK practices in context

In this section, we analyze the relationship between the AK practices and challenges
and their project context, by examining significant correlations between the AK-related
responses and some of the context-related questions. The two context factors analyzed
here are project success and project size.

The first context factor analyzed is project success, as perceived by the architects.
Perceived project successE| is determined by asking the architects how they rated seven
aspects of project success on a 5-point Likert scale from Poor to Excellent. The aspects
they rated are: Sticking to budget, Delivery in time, Client satisfaction, Management
support, Personnel turnover, Solution quality and Team satisfaction. The combined an-

2In this chapter, we use the terms “project success” and “perceived project success” interchangeably,
always meaning the success as perceived by the architects and reported in the survey
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swers of these seven aspects were subsequently averaged to obtain a quantification of
overall project success per case. Cronbach’s alpha test for internal consistency [[Cron-
bach, [1951] was used to verify that these seven responses measure the same construct
of success (alpha = 0.82).

Project size is determined by asking the architects for the number of project mem-
bers.

Table[7.1]shows the Spearman’s p correlations between project success and the AK
practice related responses in column pr succ p. Correlations between project size and
the AK practice related responses are in column pr size p.

Correlations with a positive or negative slope of over 0.2 and a significance level of
under .05 (indicated by one or two asterisks) are considered significant and discussed
here. In the discussion of the correlations, some speculation is presented as to the
underlying mechanisms, based on our experience as practicing architects.

Cause and effect

One of the objectives of this survey was to gain insight into mechanisms around archi-
tectural knowledge sharing in projects. In other words, we were looking for ways in
which architectural knowledge sharing impacts projects and vice versa - questions of
cause and effect.

When analyzing correlations like the ones found in this survey, the question of
causality between the correlated measurements deserves careful consideration. The
mere presence of a correlation by itself does not imply a causal relationship. In or-
der to determine potential causality, we resorted to three additional means: reasoning,
literature and the experience of practicing architects in Logica.

The four categories of measurements we are correlating here are:

AKS Practices: the responses related to the type, motivation and timing of architec-
tural knowledge sharing.

AKS Challenges: the responses to the question: “What challenges in architectural
knowledge sharing did you experience in your latest assignment?”.

Project Success: the perceived success of the respondents’ latest project.
Project Size: the size of the respondents’ latest project (number of project members).

There are six possible correlations between these four categories. We are not an-
alyzing correlations between AKS Practices and Challenges. Fig. visualizes po-
tential causality arrows for the five remaining possible correlations. In this figure and
Fig. a causality arrow from A to B symbolizes that A has impact on B, implying
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that making changes to A would cause related changes in B. The arrows are based on
the following reasoning:

Project Size <> Project Success Project size is well known to influence project suc-

cess in many ways, both in literature [Frederick P. Brooks, |1995] Jones} 2000]
and experience, so the primary arrow of causality is from Size to Success.

Project Size <+ AKS Practices Experience indicates that mechanisms that determine

project size are only marginally impacted by architectural knowledge sharing;
on the other hand, project size determines factors like organizational and phys-
ical distance between project members, which are obvious factors in AKS. We
conclude that any correlation found means that project size impacts AKS, and
not the other way around.

Project Size <+ AKS Challenges Like with AKS Practices, project size causes AKS

challenges. There are some challenges that may in time conversely influence
project size: for example, difficulty to obtain the appropriate skills may either
lead to a smaller project because there is no staff available, or to a larger project
because the lower skill level is compensated by adding more staff. We conclude
that there is a primary causal arrow from project size to AKS challenges, and a
potential secondary reverse arrow.

Project Success <+ AKS Practices Examples of causality in both directions are expe-

rienced: e.g., a more successful project may lead to a better atmosphere causing
more knowledge to be exchanged, or conversely more knowledge sharing may
contribute to a more successful project. We conclude that we cannot a priori at-
tach causality direction to correlations found between project success and AKS
practices.

Project Success <> AKS Challenges The word challenge is used here as a synonym

for obstacle, which can be defined as something that makes achieving one’s ob-
Jjectives more difficult. Since the objective here is a successful project, the pri-
mary arrow of causality is by definition from Challenge to Success. There is also
a possibility of reverse causality here: challenges may be exacerbated or caused
by (lack of) project success, e.g. the atmosphere in an unsuccessful project may
lead to lack of trust.

The causality arrows between the four categories of measurements as visualized in
Fig.[7.5 will be elaborated in §7.3.3] based on correlations measured.
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Figure 7.5: Causality as deduced from reasoning, literature and experience

Correlation with project success

We now discuss the correlations between architectural practices and challenges and
project success. In column 4 of Table we find 8 significant correlations. Summa-
rizing:

In more successful projects, architects tend to:

e be [ess motivated to share AK for interpersonal relationship reasons, but are more
motivated by their management’s expectations

e face /ess challenges related to interpersonal relationships.

We find no correlation between project success and the type of the architectural
knowledge shared.

e Motivation: Personal relation with colleagues, or because I have received or
hope to receive information from the other (s_akw_persrel, s_akw_return, s_akw_-
reciproc): remarkably, all motivation responses that are related to one-to-one
relationships between colleagues show a significant negative correlation with
project success. Fig. [7.6(a)] visualizes this relationship, showing a clearly down-
ward slanting cluster: the x-axis represents the individual architects’ average
mark given to these three responsesE] There are many possible explanations, but
in view of our findings about AK sharing challenges a few items further down,
the most plausible one appears to be related to trust. Problems in projects tend to
reduce trust, which might cause architects to place more value on interpersonal
motives.

3The lines in the scatter plots in this section represent linear regression fit lines and their 95% confidence
interval
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e Motivation: My management expects me to (s_akw_mgtexpect): even though
management expectations are considered one of the least important motivations
for sharing AK by the architects, it is the only motivation that has a positive
correlation with project success. The explanation may also be related to trust
levels: architects working on successful projects have more confidence in their
management, and hence are more inspired or motivated by them.

e Timing: Continuously during the project (s-akh_prjcnt): the only AK sharing
timing response that has a correlation with project success. However, visual
inspection of Fig. suggests that this is a spurious effect.

e Challenges: Conflicts and differences of opinion, Lack of trust between the project
locations, and No willingness to share knowledge (s_chl_conflict, s_chl_sitetrust
and s_chl nowill). Since there is by definition a causality between AKS chal-
lenges and project success, we expect to find correlations. Remarkably, only
three challenges are significantly correlated with project success. These three
challenges, all with a very clear negative correlation, have in common that they
are related to interpersonal relationships and emotion: conflicts, trust and will-
ingness. We have plotted the correlation between project success and the indi-
vidual architects’ average mark given to these three responses related to interper-
sonal challenges in Fig. As for the other challenges, finding no correlation
indicates one of two things: either the challenge is so insignificant that the cor-
relation is too small to be measured in a sample this size, or the challenge is
somehow overcome or neutralized.

From these correlations, we can draw the following conclusion: the only significant
AKS challenges that are not overcome or insignificant in projects, are those related to
emotion and interpersonal relationships. In less successful projects, there is less trust
and willingness to share AK, and more conflict. This appears be unrelated to the type
of AK shared. There is, however, a significant correlation with architects’ motivation
to share architectural knowledge: in more successful projects, they are more motivated
by management and less by interpersonal relationships between colleagues.

Correlation with project size

We proceed to discuss the correlations between architectural practices and challenges
and project size, as documented in column 5 of Table We find 10 significant
correlations. Summarizing:

In larger projects, architects tend to:

o face significantly more challenges of multiple kinds
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e share more knowledge about tools and methods, but less about products and
vendors.

Project size has no effect on AK sharing motivation or timing.

o [nformation related to tools and methods (s_akt_tlsmeth) is shared slightly more
by architects in larger projects than by architects in smaller projects. This is
likely due to the fact that there are simply more developers to educate on tools
and methods.

o knowledge related to products and vendors (s_akt_prodkn) architects in some
smaller projects tend to share more. We suspect that this is due to the fact that
in larger projects, decisions about products and vendors are often made on a
higher (management) level, whereas smaller project architects are more likely to
be involved in these decisions, and hence have to share more knowledge related
to products and vendors.

e AKS challenges Table[7.1|shows that out of the 18 types of challenges surveyed,
8 are significantly correlated to project size. We have also calculated the aggre-
gated AKS challenge level as the average of each architect’s challenge-related re-
sponses. It turns out this aggregated AKS challenge level is correlated to project
size with a correlation coefficient of 0.356 at a 0.001 significance level. The eight
challenges at the bottom of Table[7.1]are the only ones that are also individually
correlated to project size. Apparently, some challenges are universal, and others
are considered less relevant in smaller projects, bringing down their average re-
sponse value. We have illustrated this by plotting the average response values of
both the seven least commonly relevant and the eleven most commonly relevant
challenges against project size in Fig. The figure confirms that there is in-
deed a clear upward trend, and that it is steeper for the less commonly relevant
challenges.

Based on the fact that larger projects are likely to include more distinct depart-
ments or locations, and the well-known issue of tension between departments,
we would expect larger projects to suffer more from emotion-related challenges.
We do indeed find correlations between project size and lack of both willing-
ness (.245) and trust (.244), but no significant correlation with the challenge of
conflicts and differences of opinion.
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Figure 7.7: AKS Challenges versus project size

We now use the correlations observed in the previous section to obtain a more detailed
picture of causality. Fig.[7.8] shows the causality arrows between the four categories
of measurements as explained in and visualized in Fig. but the AKS cate-
gory boxes have been replaced with more specific subcategories corresponding to the
responses that showed correlations. Additional symbols show whether correlations are
positive or negative. Specifically, we have:

e replaced the generic box AKS Challenges with a box Less common AKS Chal-
lenges, representing the seven least common AKS challenges that have signifi-
cant positive correlations with project size

o created a box Interpersonal challenges inside the Less common AKS Challenges
box, representing the three challenges related to willingness, trust and conflict
that are negatively correlated with project success

e replaced the generic AKS Practices box with four specific boxes representing the
practices that we have found to be correlated with either project size or project

success
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e added + and - symbols to the causality arrows representing the sign of the ob-
served correlations.
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Figure 7.8: Causality as observed

There is one correlation that we had not discussed yet: that between project size
and perceived project success. Fig. displays a very clear correlation between
project size and perceived project success. Perceived project success and project size
show a negative Spearman’s p correlation coefficient of -0.453, with a significance of
0.000. This is in line with results found by [Jones, 2000], and conversely provides
some additional validation that our input data behave according to known properties
of IT projects. [Frederick P. Brooks| [1995] gives a clear explanation of one of the
mechanisms that cause this correlation. Surprisingly, a more recent survey [Emam and
Korul, [2008]] does not find this correlation.

Fig. summarizes in one picture the combined mechanisms in the interplay be-
tween AKS and project size and success. We see how project size impacts some chal-
lenges, and which challenges impact project success. We also see that project size
impacts the type of knowledge shared, and we observe a relationship between AKS
motivation and project success, a relationship with an as yet undetermined arrow of
causality.

7.4 Discussion and Related Work

In this section, we further discuss the results found above and threats to validity, and
we relate them to additional related material found in literature. Please refer to
for a discussion of the project success construct and related work, which also applies
to this chapter.
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7.4.1 Threats to validity

These results are based on a survey of architects in one IT services company in one
country. This limitation is somewhat softened by the fact that 64% of respondents
work mostly at customers’ sites, but the results are certainly influenced by cultural
aspects of both the Logica company and the Netherlands location. It would be very
interesting to repeat the survey in other companies and locations.

The ordering of the responses in Table and the response value distribution bar
charts is based on average response values. The meaning of the average number itself
is not clear, since the Likert-scale is not equidistant. An alternative ordering quan-
tity would be the percentile responses of e.g. the two most positive Likert values.
This would have the advantage of being able to say exactly what the ordering quantity
means, but the disadvantage of ignoring the information inherent in the detailed distri-
bution of responses. Visual inspection of the bar charts shows that, with the exception
of Fig. the order of the responses would not be that much different, specifically
in those cases where we have based reasoning on the response ordering. As an exam-
ple: the “seven least commonly relevant challenges” in Fig. [7.4]that we have discussed
above would also be the seven bottom-most challenges if ordered by percentile of re-
spondents answering “Relevant” or “Very Relevant”.

There is a weakness in the four questions analyzed in in that they all appear
to have slightly different scopes for AK sharing: two of the questions are about sharing
towards or from Logica, one is explicitly about sharing with colleagues, and two are
explicitly from the perspective of the originator. These scope differences are ignored
in the analysis, since they cannot be remedied without redoing the survey.

A final threat is caused by our approach of doing multiple statistical tests, and de-
riving our model from significant statistical results found in those tests. This approach
implies a risk of introducing spurious statistical results in the model. We have miti-
gated this risk by using reasoning, experience and literature, but it would be interesting
to further validate the model by using it to predict results in other surveys.

7.4.2 Architectural knowledge sharing

Over the last years, much has been published on the topic of architectural knowledge
sharing. The GRIFFIN project [Farenhorst and de Boer, 2009, |Clerc} [2011} |/Al1 Babar
et al., 2009] and six SHARK workshops [SHARKJ] 2009] on SHAring and Reusing
architectural Knowledge have been especially productive. [Farenhorst and de Boer,
2009] reports on challenges to sharing architectural knowledge: they examine these
challenges in an IT company, but perform only a qualitative analysis. The authors
deduce a number of issues resulting from a lack of architectural knowledge sharing,
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but do not directly relate the challenges to project success.

7.4.3 Motivation and emotion

An interesting finding about motivation in this survey is the observed shift in motivation
source from colleagues to management in more successful projects. Could there be an
either/or effect, in the sense that the 1-on-1 motivation by colleagues and motivation
by management are somehow mutually exclusive? In that case, one would expect a
negative correlation between these two motivation sources, which we did not measure
(Spearman’s p = 0.107 with a two-tailed significance of 0.295). We conclude that the
mechanisms causing these shifts are independent. The finding does, however, cause
one to wonder about architects’ apparent indifference to management expectations as
either a motivator or a challenge. The well-known Chaos Reports [Standish Group|
1994] already showed empirical evidence for management attention being a key project
success factor.

Markus already identified the importance of being aware of one’s motivation long
before the term architect was used in the context of system design: “Self-examination
of interests, motives, payoffs, and power bases will lend much to the implementor’s
ability to understand other people’s reactions to the systems the implementor is design-
ing...” [Markus| [1983]]. In literature, motivation is reported to have the single largest
impact on developer productivity [[Boehm, 1981 McConnell,|1996|]. Moreover, in sys-
tem development, the architecture represents the system’s earliest design decisions with
the highest impact on success [Bass et al.,[2003]. Combining these facts, it is only to be
expected that the motivation to share architectural knowledge is correlated with project
success. Our results not only point to the importance of motivation and its source, but
also shed some light on the mechanisms through which motivation and emotion impact
project success through architectural knowledge management.

Finally, some words on the topic of emotion, a term that we introduced in
as the common element between the three only challenges that have a significant neg-
ative correlation with project success: Conflicts and differences of opinion, Lack of
trust between the project locations and No willingness to share knowledge. During the
analysis, we often wondered how it was possible that we did not find any significant
correlation between the other challenges in AKS and Project Success. Consider, for
example, the most commonly encountered challenge: Difficulty to achieve common
understanding of requirements. How can a project be successful without common un-
derstanding of requirements? As stated above, the only plausible explanation is that all
of these other challenges are apparently neutralized. With neutralize we mean that if
these challenges occur, there are other factors that prevent them from having a signif-
icant impact on project success. In the case of our example, these could be compen-
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sating activities to promote the common understanding of requirements, such as client
meetings. In the end, the only challenges that are not neutralized are those related to
lack of trust, willingness, conflicts and differences of opinion: all issues in interper-
sonal relationships that have a strong negative emotional connotation. Apparently, it
is harder for architects to neutralize challenges when such negative emotions are in-
volved. This is a phenomenon that practicing architects often observe in real life, and
it should be no surprise, given that architects are human beings. The significant finding
here is that these emotional challenges are not neutralized where all other challenges
are, and hence they merit extra attention, leading to the warning in our title: Beware of
Emotions.

We conclude:

FOR ARCHITECTS, TO UNDERSTAND THEIR MOTIVATION AND DEAL WITH EMO-
TIONS ARE CRUCIAL KNOWLEDGE SHARING SKILLS.

7.5 Conclusions

We set out on this survey with two goals, which were both achieved: to establish the
current state of architectural knowledge sharing in Logica and its customers, and to
gain insight into the mechanisms around architectural knowledge sharing in projects.
In order to gain this insight, we looked at architects’ responses to four questions about
AK sharing, and the correlations between these responses and their latest projects’
success and size, and we reasoned about impact mechanisms and causality.

The analysis revealed the following mechanisms:

e Architects face many challenges sharing architectural knowledge in projects;

e these challenges are more numerous and diverse in larger projects than in smaller
ones.

e The most common of these challenges are related to group level communication
issues, the quality of codified knowledge and planning issues;

e however, these common challenges are not correlated with project success, so
apparently they are generally neutralized somehow.

e The only challenges that are correlated with project success are the ones related
to interpersonal relationships: conflicts, trust and willingness to share knowl-
edge.

e Architects’ motivation to share knowledge is more personal in less successful
projects.
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e Architects do not see management as an important factor in architectural knowl-
edge sharing, but those architects that are motivated by management tend to work
in more successful projects.

Our final conclusion is that dealing with emotions is a crucial factor in how archi-
tectural knowledge sharing leads to successful projects. It is important for architects to
understand their motivation, and they should carefully deal with emotions when shar-
ing knowledge.
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Architecting as a Risk- and Cost
Management Discipline

We propose to view architecting as a risk- and cost management discipline. This point
of view helps architects identify the key concerns to address in their decision making,
by providing a simple, relatively objective way to assess architectural significance.
It also helps business stakeholders to align the architect’s activities and results with
their own goals. We examine the consequences of this point of view on the architecture
process, and give some guidance on its implementation, using examples from practicing
architects trained in this approach.

8.1 Introduction

As mentioned in the introduction to this thesis, the notion of “software architecture”
is one of the key technical advances in the field of software engineering over the last
decades [Farenhorst and de Boer], 2009||. In that period, there have been two distinct
fundamental views as to the nature of architecture:

1. Architecture as a higher level abstraction for software systems, expressed in
components and connectors [Shaw, |1990, [Perry and Wolf} |1992].

2. Architecture as a set of design decisions, including their rationale [Kruchten,
1998, Jansen and Boschl 2005, [Tyree and Akerman, 2005].

View 1 is about “the system-level design of software, in which the important deci-
sions are concerned with the kinds of modules and subsystems to use and the way these
modules and subsystems are organized” [[Shawl|1990]. View 1 is focused on the choice
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and organization of components and connectors, but practicing architects’ decisions
appear to have a much wider range.

View 2, architecture as a set of design decisions [Jansen and Boschl 2005]], is more
generic and has been beneficial to both the architecture research community and its
practitioners [Tyree and Akerman, [2005]. This view of architecture implies a view of
architecting as a decision making process, and likewise a view of the architect as a
decision maker.

In recent years, this view of architecture and architecting has been especially ben-
eficial in promoting insight into architectural knowledge management: among other
results, it has led to new insights into the structure of what architects need to know and
document to make their decisions [Tyree and Akerman, 2005, [Ivanovi¢ and America,
2010al], and it has stimulated research into re-usable architectural decisions [SHARK,
2009, Zimmermann et al., 2007]. Both these avenues of research have devoted much
attention to structure and tooling, but so far there is limited focus on what the architect’s
decisions should be about beyond components and connectors.

We propose to view architecting as a risk- and cost management discipline. In
other words, the important things architects should make decisions about are those
concerns that have the highest impact in terms of risk and cost. Of course, risk and
cost have always been important drivers in architecture [Kazman et al.l [2002], but
our point of view goes a step further than this obvious point: we see risk- and cost
management as the primary business goal of architecting. All architecture activities
such as architecture documentation, evaluation and decision making are in essence
ways to fulfill this business goal.

As we will see in this chapter, considering architecture as a risk- and cost man-
agement discipline, rather than merely as a high-level design discipline, makes the
architect more effective in a number of ways:

o It helps the architect order their work, in both focus and timing of their decision
making.

e It helps in communicating about the architecture with stakeholders in business
terms.

The rest of this chapter is structured as follows:

e In we will show how we arrived at this point of view of what architecture
is all about, and define some key concepts.

e In we will elaborate on the meaning of risk and cost and how they determine
architectural significance.
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e Thenin we will examine how viewing architecture as a risk- and cost man-
agement discipline impacts the architecting process and helps architects in the
focus and timing of their decision making.

e In we will use three examples from industry to illustrate how this approach
helps to communicate architectural significance to stakeholders.

e In we will give some guidance on how to implement this point of view.

e We conclude the chapter with a discussion, including some frequently asked
questions about this approach.

8.2 What are Architectural Decisions About?

For years, we have been talking and writing about software architecture as a set of de-
sign decisions [Kruchten) [1998| [Jansen and Bosch, 2005, [Tyree and Akerman), |2005].
Hence, the topic of an architect’s decisions is supposedly software design. If we take
the slightly more inclusive accepted view of software architecture as the architecture
of software-intensive systems [ISO 42010} [2011]], this view of the world sees a soft-
ware architect as someone who makes design decisions about software-intensive sys-
tems. On further scrutiny, this qualification appears to be too generic: not all design
decisions about software-intensive systems can be called architectural. For example,
programmers make minor design decisions whenever they are writing code, which are
manifestly not architectural: if they were, every programmer would be called an archi-
tect.

An often heard distinction is that architects operate at a higher level of abstrac-
tion than designers or programmers [Shaw, [1990]. This certainly appears to be true
of architects who operate mainly by establishing design principles. Many architects,
however, do much more than that, all the way down to prescribing details of particular
coding practices that they deem architecturally significant [|[Fowler, 2003].

Let’s see if the international standard definition of software architecture [ISO 42010,
2011] helps: “fundamental concepts or properties of a system in its environment em-
bodied in its elements, relationships, and in the principles of its design and evolution”.
Going back to the example of our programmer and his daily minor design decisions,
these can certainly be about the properties of the system, its elements and their relation-
ships. The programmer’s decisions may also affect the system’s evolution. There are
only two concepts in the ISO 42010 definition that are clearly out of the league of the
programmer’s decisions: “fundamental” and “principles”. These concepts can guide us
towards the class of decisions architects should focus on: decisions about fundamental
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things and principles. Ralph Johnson, quoted by Martin Fowler [Fowler, |2003|], makes
a similar statement in less formal words: “Architecture is about the important stuff.
Whatever that is.”

In the last few years, the authors have started to equate “the important stuff” with
“the stuff that has the most impact on risk and cost”. In other words, architects focus
on concerns that involve high risk and cost, and architectural decisions are those deci-
sions that have significant impact on risk and cost. This view is a joint understanding
that has come into being after five years of seeing IT architects at work on dozens of
diverse complex solutions, and after extensive discussions with the architects and their
stakeholders on what should be the focus of an architect’s work. It has so far been
beneficial in several ways:

First, it helps architects organize their workflow by giving them a relatively objec-
tive way of prioritizing concerns and determining when to make decisions. How it does
this is explained in §8.4.2and §8.4.3|below.

Furthermore, it helps architects discuss architectural significance with business
stakeholders in terms that they all understand: risk and cost. This is explained in

8.2.1 Key concepts

“Concern” and “Decision” are key concepts throughout this chapter. Concern is a well-
understood, established concept: [ISO 42010, 2011]] uses the term concern to mean any
topic of interest pertaining to the system. Concerns originate from stakeholders’ needs:
this makes them “of interest” in the ISO42010 definition. A decision is a choice by
the architect amongst alternatives. The architect makes decisions to Address (fulfill,
satisfice, handle) concerns. The SEI’s Attribute-Driven Design [Bass et al., 2003] is
an example of decision-making where you choose from tactics to address a quality
attribute concern. Some examples of architectural concerns from our experience:

e How to fulfill the requirement to instantly revoke a user’s authorization, even in
the middle of a session?

How to implement required Ul elements that are not supported by HTML?
How to fulfill the response time criteria?

When to upgrade to the new version of the application server platform?

Which workflow engine to use?

Whether or not to virtualize our server landscape?

As we can see from these examples, concerns can usually be phrased as a question,
and it is the architect’s task to decide on the answer to that question, thereby addressing
the concern. Sometimes the concern is an open question, e.g.: “How to fulfill the
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Figure 8.1: Key concept model.

client’s security requirement?”. Other times the concern is a closed question, e.g.:
“Should we buy component A or build it ourselves?”” or “Should we use thin or fat
client technology?”’. The closed questions are usually elaborations of previous open
questions, narrowing down the answer space after some research. We can usually see
the decisions taking shape in these closed-question concerns: they point to a choice to
be made between a number of alternatives. The word “concern” also has a connotation
of “worry”, and this is no coincidence: architects worry about fulfilling the concerns.
They would like to prioritize the concerns that they worry most about, and consider
those the most significant concerns at any point in time.

Several models exist linking design decisions to concerns [de Boer et al.l 2007}
Jansen and Bosch, 2005, ISO 42010} |2011]]. [|de Boer et al.l 2007, Jansen and Boschl
2005] represent the Concern-Decision relationship as a 1-to-n association that crosses
other entities like “alternative” or “solutions”, even though in our experience, archi-
tectural decisions regularly address more than one concern at the same time. For our
purposes, these other entities are not needed, so like [ISO 42010, 2011]] we simplify
and generalize them to Fig.

In our model, we see Stakeholders in three important relationships: as the origin
of concerns, as the party that bears the cost of implementing decisions, and as the
victim bearing the risk of wrong decisions. Please note that these are independent
associations: the stakeholder paying for the implementation or suffering the risk of
a wrong decision is not necessarily the same Stakeholder from whom originates the
concern that the decision is addressing.

The final concept we would like to define here is Architectural Significance. This
is an attribute of Concern. It is the key concept used in this chapter to describe the
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amount of attention the architect should pay to a particular concern.

8.3 Architectural Significance in Terms of Risk and
Cost

In we stated that architects focus on concerns that involve high risk and cost.
In this section, we make this statement more exact: the architectural significance of
concerns can be represented by their cost and risk level.

Below, we present an approach for roughly quantifying the architectural signifi-
cance of a concern. The purpose of quantifying the architectural significance of con-
cerns is to be able to order them, so that architects can direct their attention to the most
significant concerns as explained in It should be noted that architects in industry
mostly follow their gut-feeling and experience, supported by checklists and templates,
for assessing what is architecturally significant, and that in our experience this assess-
ment is usually strongly related to risk and cost. The formulas presented below are
primarily a conceptual tool, a vehicle to explore the relationships between architectural
concerns and decisions, and their architectural significance in terms of cost and risk.
The usage of the formulas in practice is limited to those occasions where an architect
feels the need to validate their gut feeling of architectural significance by a rough quan-
tification, or needs to justify their prioritization towards business stakeholders in broad
economic terms.

The principle on which our approach is based is this: the architectural significance
of a concern can be represented by the budget an organization would have to reserve
to address that concern, including cost contingency, or:

AS(C) = Cost(C) + Risk(C)

In this formula, AS(C') represents the quantified architectural significance of con-
cern C. Cost(C) is the estimated cost of addressing the concern, as explained in
Risk(C) is the total expected cost of “things going wrong” associated with C
as explained in §8.3.1} the cost contingency.

An example of how this principle would be used to assess the architectural sig-
nificance of a performance concern Cpe,r: Cost(Cperr) would represent the cost of
addressing the concern, including the cost of designing and engineering work specif-
ically aimed at achieving the required performance, performance testing and tuning,
and cost of any tools used in this work. Risk(Cperf) would then be the cost contin-
gency associated with the risk of not properly addressing the concern - this term will

be elaborated in §8.3.1]
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The formula represents architectural significance in terms of money. Apart from
giving us a way to order concerns, it also gives us an idea of the maximum economic
benefit that can be achieved by architectural activities related to these concerns. If
the cost of these activities grows beyond this maximum benefit, it clearly makes no
sense to continue them: they are not architecturally significant. A special case of this,
regarding the cost of quantification of quality attributes, is presented by [|Glinz, |2008].
Spending more resources on addressing concerns than is warranted by their impact in
terms of risk and cost is a waste. Such concerns are clearly not architectural. Using risk
level to determine what an architect should do, and especially not do, is the basis of
Fairbanks’s risk-driven model [Fairbanks|, |2010]; we add cost as an equally prominent
factor to consider.

8.3.1 Risk

A Risk is something that may go wrong. Traditional architecting activities control risk
in a number of ways, both before and after committing to an architectural decision:

1. Gathering information (before committing), reducing the uncertainty of a wrong
architectural decision by e.g. architectural prototyping or architectural analysis.

2. Risk-mitigating design, using architectural strategies and tactics that reduce the
impact of change after committing, such as loose coupling and abstraction lay-
ering.

3. Documenting architectures, reducing the probability of misunderstanding archi-
tectural requirements and/or decisions.

4. Evaluating architectures, reducing the probability of wrong architectural deci-
sions by having the architecture reviewed against critical criteria before commit-
ting.

The quantified definition of risk in this chapter is the risk exposure relationship
used by Barry Boehm [Boehm, |1991]:

Risk(F) = p(F) x I(F)

in which F is a particular failure scenario, p(F’) is the perceived probability of F' oc-
curring, and I(F") is the estimated impact of F. When thinking about risks, normally
cost is not the only impact if things go wrong: other impacts should not be forgotten,
such as the impact of failure on delivery time or stakeholder satisfaction. When cal-
culating risk exposure, all impact needs to be somehow converted to financial impact.
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The reason we are talking about perceived probability and estimated impact is because
the architect, at the time of architecting the solution, can never determine the actual
probability and impact of failure.

We state that risk is an important factor in determining which concerns an archi-
tect should focus on. To be able to do this and quantify the risk aspect of a concern,
the architect must tie architectural concerns to failure scenarios. Most concerns have
inherent failure scenarios; this is what architects worry about. The most generic fail-
ure scenario related to a concern is “not addressing the concern”, a failure to meet the
stakeholders’ needs underlying the concern. Sometimes obligation to meet the concern
is formalized in an agreement (e.g. a Service Level Agreement), with related specified
penalties: in those cases the direct financial impact to the supplier is equal to those
penalties (but there may also be indirect impact, like reputation damage). Sometimes
the impact is harder to express financially, like loss of life when not meeting a safety
concern.

Once we have identified all independent failure scenarios related to a concern and
estimated their associated probability and impact, we can determine the concern’s fi-
nancial risk impact by simply adding the financial risks of these scenarios. This calcu-
lation is exactly the same as calculating a project’s required contingency budget based
on its risk register [AACE!} 2000], which we do not have to explain here.

An important aspect the solution architect should take into account is that stake-
holders have different interests in risks, related to the difference of the scope of their
stake in the solution. Stakeholders each have their own interests: a project manager
will be mostly interested in the risks that impact project success, while a security offi-
cer will be more interested in risks that impact security, which usually occur only after
the project has delivered the solution and the project manager has been discharged.
This difference could be made visible in the model described above by making the im-
pact estimate of failure scenarios stakeholder-dependent. One can then choose to add
the risk exposure of all stakeholders, or to filter out the impact related to less critical
stakeholders. What this tells us, is that the architectural significance of a concern is
stakeholder-dependent, and architects have to be able to deal with diverging stakeholder
views on which concerns are more critical to deal with. Many architects working in a
project context feel an inherent responsibility for the lifetime of the system, extending
beyond the project’s end. The approach presented here gives them a way to quantify
differences in stakeholder interests.

Risk example

Returning to our example performance concern Cp.,s above: failure scenarios are
those turns of events in which the solution fails to meet the performance criteria, e.g.
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the response times of a web application are too slow. Three examples failure scenarios
for the web application that is too slow:

F} The hosting platform is underdimensioned.
F, The connection between the hosting platform and the internet is too slow.

F5 The number of web-users exceeds expectations.

The architect has to assess these risks at design time — more precisely, at the time
she is ordering the concerns to be addressed. F) and F» are design or construction
“errors”: the architect assesses the probability p(F}) and p(F3) of such errors based
on her experience with similar solutions, probably taking into account the available
budget, technical parameters and uncertainty. The impact of such construction errors
I(Fy) and I(F5) consists of the damage and repair costs. Damage is caused by e.g.
contract penalties in the Service Level Agreement and/or users turning away from the
system because of its unresponsiveness. Repair costs are the costs of adding hardware
and/or bandwidth.

The architect assesses the probability of the number of web-users exceeding expec-
tations p(F3) based on available knowledge of the uncertainty in the projected numbers
of users. The impact I (F5) of this scenario again consists of damage and “repair” costs:
“repair” perhaps being a strange term here, because the solution itself is not broken: it
is just being overused, and needs to be expanded.

The total risk exposure then consists of adding the individual scenario’s exposures:
p(F1) x I(F1) 4+ p(F2) x I(F2) + p(F3) x I(F}).

Once again, these calculations are not usually made in practice to any level of detail:
they should be considered a conceptual tool, and applied in a manner commensurate
with the objective of determining architectural significance. The architect usually con-
siders only one or two failure scenarios that dominate the concern, and prioritizes based
on rough order-of-magnitude impact assessments.

Decision risk

Apart from the risk of not addressing concerns, architects worry about another type of
risk: the risk of making wrong architectural decisions. When generating a concern’s
failure scenarios, we should include scenarios in which the decisions addressing the
concern turn out to be wrong. The two types of risk are closely related, and one could
argue that a failure to address a concern is simply a failure to make the right decisions
to address it. In [Poort and van Vliet, [2011]] we presented a simple formula based on
this argument, but we will delve a bit deeper here.

129



CHAPTER 8. ARCHITECTING AS A RISK- AND COST MANAGEMENT
DISCIPLINE

What is a “wrong decision”? It is when we choose A when B would have been
better, or vice versa. “Better” meaning e.g.: costing less in terms of time and money, or
resulting in a solution that better fulfills requirements. A failure scenario related to an
architectural decision, expressed in its most generic terms, is: it turns out we made the
wrong decision. We denote this failure scenario F' related to decision D by F'p_wrong-
It is important to understand that “wrong” is not an attribute of a decision; “wrong
decision” is simply a shorthand way of expressing a scenario. In such a scenario, the
failure can be due to all kinds of internal and external factors, unforeseen events etc.,
which “it went wrong” pertains to. Hence, the word “wrong” does not necessarily
qualify the architect’s work when making the decision.

Let’s look at an example concern from the software architecture world: keeping
java objects in an application server in sync with the corresponding records in a rela-
tional database (RDB). This is known as the O/R mapping problem, and several tools
and techniques exist to address it: use of the Hibernate tool, use of entity beans, hard-
coded SQL, etc. We will base a small thought experiment on this concern. For sim-
plicity’s sake, let’s state that the O/R mapping problem can be addressed by one archi-
tectural decision: the decision to choose one of the available tools or techniques. The
failure scenarios are those that inhibit the solution’s quality attributes like maintainabil-
ity, data integrity, performance etc. Depending on the context and what happens in the
future, a decision to hard-code SQL statements to populate java objects could turn out
to be wrong. The resultant close coupling of the java code with the RDB data model
and technology could cause excessive effort to be needed for changes, violating a mod-
ifiability requirement. We cannot know this at design time; all we can do is assess the
probability p(Fp_swrong) and the impact I (Fp_yrong) Of this failure scenario. This is
not trivial, since the impact depends on when the failure is determined. If the situation
goes undetected it will harm the stakeholders by driving up the cost of changes. If it is
detected before the “wrong” solution can do any damage, the project team would still
have to re-factor the code, and the impact of the wrong decision ultimately translates
to the total cost of this re-factoring to the stakeholders, including the re-factoring effort
and any additional costs caused by the subsequent delay in delivery of the solution.
This is in effect the cost of reversing the architectural decision.

This thought experiment illustrates a general point: the impact of a wrong decision
usually involves both the cost of reversing the decision and the potential damage to
the stakeholders if it is not reversed, or until it is reversed. In any case, the cost of re-
versing an architectural decision is an important factor in its architectural significance.
When using cost and risk to determine architectural significance, design decisions that
are expensive to reverse tend to be more architectural. This gives a theoretical ba-
sis to Fowler’s qualification of architecture as “things that people perceive as hard to
change.” [Fowler, [2003]]. It also resonates strongly with [Klusener et al., |2005]], who
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state that “the software architecture of deployed software is determined by those as-
pects that are the hardest to change.”

8.3.2 Cost

Cost is the amount of money spent on something. The formula for estimating the cost
of addressing a concern is:

Cost(C) = Z Cost(D)

DeDA(C)

where DA(C) is the set of decisions addressing concern C, and Cost(D) is the esti-
mated cost of implementing decision D. There are many documented ways to estimate
cost in software engineering (e.g. [Boehml 1981]]), which we will not discuss here. Risk
factors must be excluded from this cost estimate, to prevent double-counting risks into
the architectural significance function AS(C') above. Once again, we are not suggest-
ing to use this formula to determine architectural significance in practice; it is presented
to clarify our view on architectural significance.

It should be noted that concerns and design decisions have an n-to-m relationship:
design decisions often address multiple concerns, so that adding costs calculated this
way for multiple concerns C; and Cs will cause double-counting for decisions that
address both concerns in DA(C1) N DA(Cs). Since we are only interested in deter-
mining the cost-factor in architectural significance, we are not planning to add costs of
different concerns, so this is no problem here.

Just like with risk, the solution architect should always realize that stakeholders
have different interests in costs, related to the difference of the scope of their stake
in the solution. Hence, a project manager will be mostly interested in project costs,
while a business owner may be more interested in the Total Cost of Ownership (TCO).
Depending on the solution architect’s context, her architectural decisions may effect
TCO, project costs or both. So both the cost and the risk element of architectural
significance are shown to be stakeholder-dependent.

8.4 Impact on Architecting Process

We will now examine the impact of the risk- and cost management view of architecture
on the architecting process. In the previous sections, we have discussed the importance
of managing risk and cost in architecture, and presented a method for ordering concerns
by architectural significance. In this section, we will show how this ordering can be
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used to optimize an architecting process so that it becomes better at controlling risk
and cost.

As a reference architecting process, we once again use the generic approach docu-
mented in [Hofmeister et al., |2007]]. We have already encountered this paper in Chap-
ter[6} it compares five industrial approaches to architectural design, and extracts from
their commonalities a general software architecture design approach.

The approach involves three activities, and a workflow that reflects the fact that the
three activities are not executed sequentially.

8.4.1 Architecting activities
The generalized architecting activities are:

1. Architectural analysis: define the problems the architecture must solve. This
activity examines architectural concerns and context in order to come up with a
set of Architecturally Significant Requirements (ASRs).

2. Architectural synthesis: the core of architecture design. This activity proposes
architecture solutions to a set of ASRs, thus it moves from the problem to the
solution space.

3. Architectural evaluation: ensures that the architectural design decisions made are
adequate. The candidate architectural solutions are measured against the ASRs.

Of these three activities, the one that is most impacted by the risk- and cost man-
agement view of architecture is architectural analysis. The basis of this analysis are
the solution’s context and architectural concerns. Viewing architecting as a risk- and
cost management discipline sheds light on which concerns are architectural: those that
have high impact in terms of risk and cost. This addition necessarily implies that risk
and cost assessment becomes part of the architectural analysis activity. This applies
not only to the concerns to be addressed, since the impact in terms of risk and cost is
transferred to the Architecturally Significant Requirements (ASRs) resulting from the
analysis. In [Hofmeister et al., 2007, the ASR definition is borrowed from [[Obbink
et al.,|2002]]: “a requirement on a software system which influences its architecture”. In
risk- and cost driven architecting, the ASRs are likely the most sensitive requirements
in terms of risk and cost.

8.4.2 Architecting workflow

In [Hofmeister et al.,|2007]], the authors describe an “apparently haphazard process” in
which architects maintain, implicitly or explicitly, a “backlog of smaller needs, issues,
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problems they need to tackle and ideas they may want to use. The backlog drives the
workflow, helping the architect determine what to do next.” Hofmeister et al. make
clear that the backlog typically consists of architectural concerns but also other types
of items, and that it is constantly re-prioritized using various prioritization tactics. They
mention risk as one of the mostly external forces driving priority; others are team or
stakeholder pressure or perception of greater difficulty.

When talking to architects, many of them indicate that this is where most of the
added value of the risk- and cost driven view on architecting is. It helps them better
organize this apparently haphazard backlog process by giving them a clear measure of
priority: prioritizing by risk and cost.

In we have only discussed determining the architectural significance of Con-
cerns. Backlog items typically take the form “We need to make a decision about X.” or
“We should look at Y in order to address Z.”[Hofmeister et al., 2007]]. The fact that not
all of the backlog items are formally architectural concerns is not a problem in practice,
as long as the team is not too religious about the definitions. As long as the backlog
items can reasonably be expressed in terms of risk and cost, the prioritization works.

One important thing to realize here is that A has higher priority than B does not
necessarily imply A must be addressed before B. The backlog is not a strict picking
order. Rather, it helps to identify the top n items to be addressed at a particular point in
time, where usually n = 5 4-2. This seems to be a rather unsophisticated approach, but
as we will see in the next section, the risk management aspect of architectural decision
making allows us to further analyze the timing aspect.

We saw in the previous section that the architecting activity that is most directly
impacted by the risk- and cost management view of architecture is architectural anal-
ysis. The architecting workflow, however, drives all architecting activities, including
some that are not mentioned in Hofmeister et al.’s generalized approach, such as ar-
chitecture implementation and maintenance. Through the architecting workflow, the
risk- and cost management view of architecture permeates into those activities as well.
For example: in the architecture documentation activity, the views that should be doc-
umented first are those that are associated with concerns that have high impact in terms
of risk and cost.

8.4.3 Architectural decisions and the flow of time

When discussing risk and time, an important aspect is that the nature of the risk of a
wrong decision D changes at the moment that we commit to the decision. Until that
moment, the primary failure scenario is “the architect will make a wrong decision”;
after that moment, the failure scenario changes to “the architect has made a wrong
decision”. The difference seems trivial, but is not, as we will see in this section.
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Figure 8.2: Decision risk factors over time.

The time at which to address architectural concerns is influenced by their risk-
related character. We have seen in §8.3.1]that the risk related to an architectural decision
is the product of the probability of a wrong decision and the impact of a wrong decision,
and that an important component of the second factor is often the cost of reversing the
decision. Generally, the influence of time on these factors depends on the moment
of committing to a decision, as is illustrated in Fig. 8.2] In this figure, we see the
probability that a decision D turns out wrong represented by a line, the impact of D
being wrong by another line, and the moment ¢{p of committing to decision D as a
vertical line:

e After the moment of decision, the cost of reversing an architectural decision,
and with it the impact of it being wrong, will increase over time as it is being
implemented.

e Until the moment of decision, the probability of a wrong architectural decision
decreases over time as more information becomes available.

e Once we start implementing the decision, still more information will become
available, but because we are already committed to it, it will not necessarily
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reduce the probability of D having been wrong. This is represented by the shaded
triangular area.

The shaded triangle requires some explanation. It is caused by the emerging in-
formation during the implementation of decision D, which can be either good or bad
news:

e If all goes well, the probability of the decision having been wrong P(D —
wrong) decreases, and the probability line will continue to go down. But what-
ever happens, the impact of D having been wrong will increase. The resulting
risk may still either go up or down, depending on the rate of increase of the
impact. R(D) = P(D — wrong) x I(D — wrong) may either decrease or
increase.

o If the emerging information points more and more in the direction of D having
been wrong, both P(D — wrong) and I(D — wrong) will increase, so R(D)
will certainly increase.

Assuming that the cost estimate of implementing D remains stable, this implies
that the architectural significance of the concern C' that D is designed to address may
increase after we have made the decision.

Looking at architecting as a risk- and cost management discipline, we have to con-
clude that it is important for architects to continue to pay attention to the concerns they
have made decisions about, because their architectural significance may yet increase.
An extreme example of this is that sometimes concerns that did not seem architectural
at the time of architecting, in running systems turn out to be architectural after all. So,
risk- and cost driven architecting leads us to extend the list of architectural activities
designed to control risks at the beginning of with another activity: monitoring
architectural concerns after committing to decisions to address them. The economic
impact of monitoring decisions and resolving uncertainty over time has been analyzed
extensively by several authors [Biffl et al., [2006| using decision trees and real-option
theory.

8.5 Stakeholder Communication

Many stakeholders, especially business managers, are not used to thinking and talking
in terms of levels of abstraction or components and connectors. Part of the architect’s
job is to translate architectural concerns and decisions into terms that stakeholders un-
derstand [Clements et al.l|2007]]. One substantial advantage of expressing architectural
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significance in terms of risk and cost is that they are universal terms that most stake-
holders can relate to. These terms smooth communication between architect and stake-
holders, and gives the architect a relatively objective measure to explain priorities to
stakeholders. We already saw the importance of objectivity in stakeholder communi-
cation about solution architecture in the SMSC case study in Chapter [5] In we
will list some more examples from practice of architectural concerns and how they can
be expressed in terms of risk and cost to facilitate stakeholder communication.

Apart from the level of individual concerns, we are also experiencing that viewing
architecting as a risk- and cost management discipline is improving business managers’
understanding of the overall value of architecture and architects. Managers routinely
understand the value of risk mitigation and cost control. When these are presented as
the primary business goals of architecture, we find that this makes business managers
more comfortable assigning often highly-paid [Money Magazine, 2010] architects to
projects or product organizations.

8.5.1 Examples from practicing architects

In this section, we will present some examples from real projectsﬂ presented to us
by the architects trained in the Risk- and Cost Driven Architecture approach. These
examples highlight the risk and cost aspects of typical real-life architectural concerns:

e Application Server platform A large, business critical product application with
a substantial java-based web interface is extensively customized and parameter-
ized before being put in production. The development team is using the Open
Source JBoss application server platform to develop the customizations. The
target production platform is a Commercial Off-The-Shelf (COTS) application
server. At a certain point in time, the development platform will also have to
start using the target COTS application server. The architectural concern is the
timing of this move. Moving the development platform to the “heavier” COTS
application server too early will cause loss of efficiency and entail extra costs in
the development team. Moving too late carries the risk of finding application-
server specific issues too late, maybe forcing some refactoring that could have
been avoided. The primary business stakeholder initially was not interested in
this concern: according to his knowledge, J2EE application servers were stan-
dard and the move should be trivial. The architect had the important challenge
of making the business stakeholders aware of the risk and cost aspects of the
concern.

! All examples are from real projects; due to company confidentiality constraints, the examples have been
abstracted away from their specific project context.
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e Role-based Interface A web site has been designed and presented to the business
stakeholders. In the design, the user only sees functionality that she is authorized
for. Architectural concern is that users can switch roles during a session, which
is not supported by the COTS portal platform in use (roles are cached during the
session). Time to solve this issue is very limited. Several alternative solutions are
considered: asking the portal supplier for help is risky, because it will take a long
time and there is no guarantee for success. Alternatively, users can be required
to log out and back in when they switch roles; this is low-risk, but makes the
system less efficient, raising costs on the user side. In this example, making the
risks and costs explicit helps the stakeholder make the right trade-off.

o Web and SOA access channels A large java-based application is being devel-
oped. The system will have a broker-like role, connecting various small and
large companies, at widely varying levels of IT sophistication. The system is
required to offer much of its functionality both as a web-based user interface
(for small, low-IT companies) and as SOAP web-services (for larger companies
with more sophisticated IT). At the time of designing the system, it is unclear
what the distribution across these access channels will be in the near future; it
might even change substantially during the time the system is being built. Key
architectural decisions to address this concern are whether or not to build a com-
mon abstraction layer for both the web- and web-services interfaces on top of the
business layer, and what mechanism to use to expose the common functionality
to web-services. Costs are the development cost of the abstraction layer, the li-
cense and configuration costs of COTS web service integration packages. The
key risks are jeopardizing performance by the abstraction layer, putting a lot of
effort in access channels that might hardly be used by the time of deployment,
and inconsistencies in business rules across the access channels.

8.6 Implementing the Risk- and Cost Driven View
of Architecting

After elaborating the theoretical implications of viewing architecting as a risk- and
cost management discipline in the previous sections, we will now focus on the practical
implications for the architect’s activities. We will do this in the form of a list of guiding
principles that the architect can apply to their way of working. This guidance is mostly
independent of the particular flavor of architecting process used.

In order to improve the effectiveness of their work in terms of risk and cost control,
architects should adhere to the following guidelines:
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o Make risk- and cost assessment part of architectural analysis. This is a prerequi-
site to the other guidelines in this list, and implies that architect’s skill set should

include risk management and cost estimation.

o Create and maintain a list of architectural concerns and order them by risk and
cost. The top 3-7 items on this list are the most architecturally significant, the
concerns that the architect should focus on at any point in time. Apart from
helping the architects in their projects, this has the additional benefit of creating
a stored history of architectural concerns across multiple projects and architects,

which can be analyzed for lessons learned.

o Regularly monitor the key architectural concerns. Keep in mind that the archi-
tectural significance of a concern may increase after the concern has initially

been addressed by architectural decisions.

o Communicate about architectural concerns and decisions with business stake-
holders in terms of risk and cost. Architects should explicitly link their priorities
to the business context of their stakeholders, keeping in mind the purpose of

doing architecture in the first place: to manage risk and cost.

o Get involved in the program’s risk register. This is a special case of the previous
guideline, where the stakeholder is the project or programme manager. The ar-
chitectural concerns all imply risks and hence should be represented in the risk
register, and the activities to address the concerns are the associated risk mitiga-

tion measures.

® Report progress in terms of risk and cost control. The extent to which architec-
tural concerns are under control is a good measure of the progress made during
the architectural design phase of a project. The primary deliverables of an ar-
chitect are the architectural decisions that increase control, and the architect’s
progress should be tracked on those deliverables (rather than e.g. the chapters of

the architectural blueprint).

e Stop architecting when the impact gets too low. Spending more resources on
addressing concerns than their impact in terms of risk and cost warrants is a
waste. Such concerns are clearly not architectural. Don’t do more architecture
than is strictly necessary [Malan and Bredemeyer, |2002]. Architects invariably
have a limited amount of time and they should spend it addressing concerns with

the most pressing risks [Fairbanks||[2010] and cost.
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8.7 Conclusions and Discussion

In this section, we will discuss related work. We will also briefly discuss a number of
questions that were frequently raised when teaching the approach to practicing archi-
tects. We will close with our main conclusions.

8.7.1 Related work

Risk in software architecture

Attention to risk is fairly ubiquitous in software development. A state of the art
overview of risk management in software development is given in [Bannerman), 2008].
The importance of risk analysis in software development is aptly phrased by Tom
Gilb [|Gilbj, |[1988]]: “If you don’t actively attack the risks, they will actively attack you”.
Most of this literature does not specifically focus on software architecture. One class
of papers and books discusses a variety of risks associated with software development,
from requirements volatility to staff turnover. Often, checklists are proposed to system-
atically investigate a large number of such risks [Boehm,|1991]]. Some of the questions
posed may relate to the software architecture, such as “Does any of the design de-
pend on unrealistic or optimistic assumptions?” or “Are you reusing or re-engineering
software not developed on the project?” [Costa et al.L |2007]. Another class of papers
discusses sophisticated techniques for computationally handling risks, using Bayesian
networks, fuzzy set theory, and the like; [Leel|1996] is an example hereof. A third type
of articles focuses on conceptual models for handling risk in software development.
Process models, such as the spiral model [Boehml, [1988]], explicitly pay attention to
risk analysis as one of the early process steps, to identify areas of uncertainty that are
likely to incur risks and next identify strategies to resolve those risks at an early stage.
Elsewhere, risk analysis is used to select an appropriate process model; for instance,
[Boehm and Turner, |2004] uses risk analysis to choose between agile and plan-driven
development models.

Attention to risks in software architecture is most prominent in software architec-
ture evaluation. For instance, one of the outputs of the Architecture Tradeoff Analysis
Method (ATAM) [Bass et al., 2003] is a list of risks and non-risks. By studying the
output of a series of such ATAM evaluations, [Bass et al., [2007] were able to reveal
and analyze risk themes specifically geared towards software architecture. [Slyngstad
et al., |2008] provide results of a survey amongst software architects to identify risk and
risk management issues in software architecture evaluations. One of the lessons they
draw is that lack of software architecture evaluation is itself a potential risk.
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Risk and cost in decision making

Viewing risk and cost as drivers in architecture decision making has led to approaches
like the Cost Benefit Analysis Method (CBAM) [Kazman et al., [2002] and the Archi-
tecture Rationalization Method (ARM) [Tang and Hanl [2005]] that relate architectural
decisions to the benefits they bring to an organization, studies that emphasize business
implications of architectural decisions [Clements et al., [2007]], and approaches that
consider architectural decisions as investment decisions [Biffl et al., 2006, Ivanovic
and Americal, [2010b].

[Feather et al.,|2008] use risk and cost as a driver in requirements decision making.
In their defect detection and prevention (DPP) approach, they introduce risk as the
primary driver for deciding which requirements to fulfill. Architectural strategies to
address the requirements are represented as risk mitigation measures in the model; this
may look a bit convoluted, but is fully in line with our view of architecture as a risk
management discipline. The cost of (partly) fulfilling a requirement is obtained by
adding the cost of all selected mitigation measures for the associated risks.

[Fairbanks}, [2010] introduces the Risk-Driven Model, whose aim is to do just enough
architecture, based on the risks identified. The method is directed at the overall plan-
ning of architectural activities, rather than individual decisions taken during architect-
ing. It also does not treat cost as an explicit factor in prioritizing architectural activities.

Decisions in software development, architecture, buying stock, and many other
fields, are made by humans. These decisions often are not purely rational; human deci-
sions are influenced by prior knowledge, time pressure, short term memory, and so on.
[Simonl, [1969] coined the term bounded rationality to denote our limited capabilities
for making rational decisions. Sometimes, a third type of rationality is distinguished
next to pure rationality and bounded rationality: social/cultural rationalism. There, it is
recognized that decision making often is a group process, and the interaction between
the decision makers affects the outcome. The different perspectives of the participants
may bring new insights and solutions.

When people take decisions, they attach gains and losses to the possible outcomes.
If the outcomes are not certain, we may distinguish between four prospects:

1. A high probability of a gain, as in a 95% chance to win $ 1000 (and a 5% chance
to win nothing), against 100% chance to win $ 950.

2. A high probability of a loss, as in a 95% chance to lose $ 1000, against 100%
chance to lose $ 950.

3. A low probability of a gain, as in a 5% chance to win $ 1000, against a 100%
chance to win $ 50.
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4. A low probability of a loss, as in a 5% chance to lose $ 1000, against a 100%
chance to lose $ 50.

Seminal research by Kahneman and Tversky on this type of decision making has led to
what is known as prospect theory, and the fourfold pattern described above [Kahneman
and Tversky, 1979, Kahneman, 2011]]. It turns out that people behave in a risk averse
manner in situations 1) and 4). In situation 1, one prefers a sure gain and does not
gamble. In situation 4, one accepts a small loss and does not risk the chance of a large
loss. In situations 2) and 3), people behave in a risk seeking way. In situation 2), one
tends to gamble and hope for the 5% chance that no loss is incurred. In a similar vein,
the hope for a large gain makes people opt for the 5% chance to do so in situation 3).
Note that in all four cases, the standard Bernouilli theory results in the same utility for
both options ($ 950 in cases 1) and 2), $ 50 in cases 3) and 4)).

The same risk averse/risk seeking behavior is to be expected in decision making
in software development projects. One typical example is the continuation of projects
that only have a very small chance to ever succeed (situation 2) in the above scheme.

Requirements prioritization

There is a strong resonance between the approach presented here and the extensive lit-
erature on requirements prioritization methods (RPMs). The main differences between
our approach and RPMs are in the object and the goal of prioritization:

e RPMs prioritize requirements on the solution, whereas we prioritize stakeholder
concerns. These two concepts are related, but they are not the same: concerns are
addressed by architectural decisions, requirements are implemented in the solu-
tion. One stakeholder concern usually leads to multiple solution requirements,
and one requirement can address multiple stakeholder concerns.

e RPMs determine the delivery order of requirements, whereas we help the archi-
tect determine the order in which she pays attention to concerns.

A well-known requirements prioritization principle comes from the Agile Mani-
festo [Agile Alliancel [2001]]: “Our highest priority is to satisfy the customer through
early and continuous delivery of valuable software”. Thus, many RPMs use business
value as the main prioritizing factor [|Gilb, [2005]], but often other factors are also taken
into account, such as return on investment (Rol) [Kazman et al., 2002, Regnell et al.|
2008] and risk (mainly in security-oriented requirements engineering [Herrmann et al.|
2010]]). Our failure scenarios in §8.3.1] are strongly related to the Misuse Cases found
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in MOQARE [Herrmann and Paech, [2008]]. Based on priority, RPMs allocate require-
ments to deliver iterations in software projects, or releases in product roadmaps. [Her-
rmann and Daneval 2008 examines 15 RPMs, and analyzes their use of benefit and
cost as prioritizing factors. [Racheva et al.| |2010] derives a conceptual model for re-
quirements prioritization in an agile context based on 19 RPMs. The model identifies
five requirements prioritizing aspects for stakeholders: Business Value, Risk, Effort
Estimation/ Size Measurement, Learning Experience, and External Change. We recog-
nize the two main themes of this chapter: Risk and Cost. For a discussion on Business
Value in architecting, please refer to the next section. For architects, the other two
factors are an integral part of their architecting process: External Change is usually
handled as a modifiability concern and a risk factor, while Learning Experience is the
means by which architects address uncertainty in the solution domain, using practices
like architectural prototyping.

Architects should be aware of both the differences and the similarities between
RPMs and risk- and cost based architecting. The similarities mean that the RPM pri-
oritization techniques can help architects prioritize their concerns. The differences
are equally important: an architect should not focus exclusively on high priority re-
quirements in terms of delivery order, since requirements scheduled for later delivery
may have high impact on the architecture, and prove very risky if ignored. As stated
in [Abrahamsson et al.l [2010]], “certain classes of systems that ignore architectural is-
sues for too long hit a wall and collapse due to a lack of an architectural focus.”

8.7.2 Frequently Asked Questions

The topics in this section were raised by the architects we trained in the Risk- and
Cost Driven Architecture approach. Since they led to interesting discussions, we are
presenting them here.

What about existing systems?

What does our view on architecture mean for existing systems, i.e. systems after their
initial delivery? Since we already know how the architectural decisions made during
the design phase turned out, does it still make sense to talk about the risk of making
wrong decisions? It does: just like during the design phase, the architectural activi-
ties related to existing systems have risk and cost management as their prime business
objective. Typical activities at this stage are architecture recovery, evaluation and archi-
tectural modifications to the system. The reason an architect gets involved is to identify
architecturally significant concerns related to something that the stakeholders want to
do with this system; most likely, modify it in some way. And once again, what is archi-
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tecturally significant is determined by risk and cost impact, and decisions need to be
made to address these concerns, e.g: do we refactor a component that is hard to change?
Do we port the system to another platform? [Klusener et al.l 2005], in their extensive
paper on modifying existing systems, come to a very similar notion of architectural
significance in those systems, as we have seen in [Slyngstad et al., 2008|] have
surveyed risks in software architecture evolution, and present the most common risks
for architectures of existing systems and their associated mitigation activities.

What about value?

One might argue that a solution’s value to its stakeholders should play at least as im-
portant a role as the risk and cost of delivering it. In practice, we find that solution
architects are less concerned with stakeholder value, especially when they operate in a
project context. This is because most value considerations have already been taken into
account in the solution’s goals and business requirements, which serve as input to the
project. This process of pre-determining the value of a solution by fixing its high-level
requirements is usually considered part of the requirements analysis rather than the ar-
chitecting phase of a solution’s lifecycle, and is often largely completed even before
the solution architect gets involved. A frequently occurring example of this situation
is when a supplier architects a solution in response to a Request for Proposal (RfP):
the RfP documentation contains requirements that encapsulate the requested solution’s
business value. As long as the architected solution fulfills these business requirements,
the value objective is considered to be fulfilled, and it is the architect’s job to fulfill
the RfP requirements at the lowest possible cost. We even see that solutions that add
stakeholder value beyond the previously captured requirements are often regarded with
suspicion. The management jargon for this situation is “gold-plating”, and it has strong
negative connotations. However, as we have seen in Chapter [3] there are dangers asso-
ciated with determining value-based requirements without taking the architecture into
account.

In practice, there are two types of situations where solution architects are involved
in stakeholder value discussions:

1. When the solution architect is involved in the analysis work. A good example
of this is the Cost Benefit Analysis Method [Kazman et al., |2002], a method for
performing economic modeling of software systems, centered on an analysis of
their architecture. Another example is the requirements convergence planning
practice presented in Chapter 3]

2. Creating value for “internal” stakeholders in the delivery project, such as the
developers and the project manager. Examples are architectural decisions that
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create re-usable components or make the solution’s construction more efficient.
In this situation, the value actually consists of cost savings, reinforcing the point
that the architect’s work is cost-driven.

In short, when architectural features or requirements are prioritized in order to de-
termine what to build in a solution, value plays an important role. The focus of solution
architecting in this chapter, however, is on how to build a solution, and then risk and
cost trump value.

As explained above, [Kahneman| 201 1]] finds that people are prepared to take high
risks if there is a chance for a high gain, even if such a choice is not rational. Our ap-
proach raises the profile of risks and costs in the trade-off against value, and one would
expect that this would help to prevent irrational architectural decisions in high-risk situ-
ations. It would be interesting to validate this expectation by presenting architects with
high-risk, high-gain architectural decision scenarios and analyzing differences in re-
sponses depending on their training and their knowledge of expected short-term gains.

Does this mean architects always have to minimize risks?

Risk and cost are used to assess the architectural significance of concerns, and should
play a role in trade-offs between decisions addressing these concerns. This does not
automatically mean that architects or stakeholders should always select the architec-
tural alternative with the lowest risk: that is up to them entirely, and depends on other
factors such as the risk-averseness of the culture in their organization. What it does
mean is that these risks should be made explicit and considered in the trade-off.

8.7.3 Conclusion

We have presented and elaborated a view of solution architecting as a risk- and cost
management discipline. Although this view is an extension of pre-existing views on
software architecture, it goes beyond software architecture alone: it includes other
architecture genres, captured under the name Solution Architecture as described in
qL.2.1]

The risk- and cost driven view on architecture is the basis for the architecting ap-
proach presented in the following chapter: Risk- and Cost Driven Architecture. It is
part of a solution architecture training programme that has so far been taught to 159
architects, many of whom have claimed that it helps them become more effective in
their jobs. These claims are supported by anecdotal evidence, some of which we have
presented here. In Chapter[9] we will further substantiate the claims.
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In conclusion, viewing architecture as a risk- and cost management discipline helps
architects and stakeholders in focusing their activities on high-impact concerns, and in
doing so raises the value of architecture to organizations.
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Risk- and Cost Driven Architecture: a
Pragmatic Solution Architecting
Approach

This chapter describes RCDA, the solution architecting approach we developed in
Logica. The approach consists of a set of practices, harvested from practitioners and
enhanced by the research presented in this thesis. We present the structure of the ap-
proach and its rationale, and the result of a survey measuring RCDA’s effect among
architects trained in the approach. The survey shows that for the majority of trainees,
RCDA has significant positive impact on their solution architecting work.

9.1 Introduction

In Chapter [6] we described how in 2006, we started out to create a generic architecting
process for Logica. The result of this effort is presented in this chapter. It is an inte-
grated set of solution architecting practices, collectively called Risk- and Cost Driven
Architecture (RCDA). We first give a short summary of the principles and practices
that make up RCDA. We then explain the structure that integrates the practices, includ-
ing the rationale behind it, and explain how the approach was implemented among the
company’s architects. We then present the result of a survey measuring the effect of
RCDA training on the architects.
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9.2 The RCDA Approach

In this section, we first describe the practices that are the basic building blocks of
RCDA. We then explain the four key principles the approach is based on, and the way
the approach is implemented in the organization. We conclude with a clarification
and justification of the structure of RCDA: why it uses practices, what elements exists
beyond the practices, and what structures are used to organize them.

9.2.1 RCDA practices

The basic building blocks of RCDA are practices. A practice is a way to systematically
characterize a problem and address it. The practice concept will be explained further
in Practices that address closely related problems are clustered into practice
sets. There are practice sets for Requirements Analysis, Solution Shaping, Architecture
Validation, Architecture Fulfillment, Architectural Planning and Architectural Asset
Management.

The practices of RCDA, ordered by practice set, are:

Requirements Analysis practices, where the requirements originating from stakehold-
ers are prepared for shaping a Solution:

Architectural Requirements Prioritization addresses the problem of pinpoint-
ing architecturally significant requirements and concerns, according to the
principles laid out in Chapter|[§]

Dealing with Non-Functional Requirements gives guidance on handling NFRs,
which are often underexposed and can have major impact on the solution;
it contains the key elements from Part I of this thesis.

Stakeholder Workshop is a practice for obtaining architectural requirements
from stakeholders, based on the SEI’s Quality Attribute Workshop [Bar-
bacci et al.| [2003].

Solution Shaping practices to define a solution’s architecture:

Solution Selection addresses the problem how to identify and select the best
fitting strategy to fulfill architectural requirements on a Solution in an ob-
jective manner, implementing one of the lessons learned from Chapter [3]

Solution Shaping Workshop is a special case of a Stakeholder Workshop. All
Logica stakeholders are gathered to kick start the solution shaping process,
led by the solution architect.
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Cost-Benefit Analysis helps architects to consider the return on investment of
any architectural decision and provides guidance on the economic tradeoffs
involved, based on the SEI’s CBAM practice [Kazman et al., 2002].

Applying Architectural Strategies describes how to implement architectural
strategies selected in previous steps, determining a solution’s structure ac-
cording to the principles explained in e.g. [Bass et al.|[2003, |Gamma et al.|
1995].

Architecture Documentation documents the current state of the solutions ar-
chitecture in a set of views [Kruchten, (1995, [ISO 42010, 2011]], focussed
on effectively communicating the architecture to the relevant stakeholders.

Documenting Architectural Decisions addresses the problem of tracking ar-
chitectural concerns and decisions throughout their lifecycle, based on e.g.
[Tyree and Akerman, 2005, Jansen and Bosch) 2005].

Solution Costing gives guidance on early costing of delivering a solution using
a selected architecture.

Architecture Validation practices aimed at validating the architecture developed in
previous steps:

Architecture Evaluation to create transparency and identify risks in the archi-
tectural decisions made, and to verify that the architecture meets its require-
ments; roughly based on [[Abowd et al., {1997

Architectural Prototyping is performed when there is uncertainty about the
feasibility of (parts of) an architecture which can be resolved by “trying it
out”.

Supplier Evaluation helps architects identify potential risks when committing
to delivering third party products as components of an architected solution.

Architecture Fulfillment practices, related to the development and delivery of the
solution under architecture:

Architecture Implementation making sure that the architecture developed and
validated in previous steps is actually implemented in the solution.

Architecture Maintenance provides guidance on taking an existing solution
into operation, and on maintaining a solution’s architecture once it is oper-
ational.

Blended Architecting gives guidance on solution shaping and fulfillment in a
geographically distributed solution delivery setting.
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Architectural Planning practices, giving guidance on how to plan architecting activ-
ities:

Architecting Lifecycles addresses the problem of when to apply RCDA prac-
tices, showing how the various RCDA practices map to certain common

scenarios.

Requirements Convergence Planning addresses the problem of finding the best
balance of affordability between cost and benefit of architectural require-
ments, as explained in Chapter 3]

Architecture Contingency Planning helps mitigate the risk of having to back-
track architectural decisions when it turns out an architecture cannot fulfill

the stakeholders’ needs.

Architectural Asset Management practices, aimed at re-using architectural assets like
knowledge, reference architectures and re-usable components across solutions:

Architecture Knowledge Management addresses the problem of codifying and
sharing architectural knowledge such as patterns and lessons learned across
the company, using techniques like those documented in [Zimmermann
et al.,[2007] and [Farenhorst and van Vliet, 2008]].

Software Product Line Management gives guidance on how to implement and
manage software product lines so that they serve as the basis for multiple
solutions, based on the SEI Software Product Line materials [Clements and

Northrop, [2002].

Technology Monitoring helps architects keep abreast of new developments that
can provide more fitting alternatives for solution selecting.

The practices, grouped in practice sets, are visualized in Fig.[9.1]

9.2.2 RCDA principles

Risk- and Cost Driven Architecture is based on the following key principles:

Cost and Risks drive architecture.

Architecture should be minimal.

Architecture as both Blueprint and Design Decisions.
Solution Architect as Design Authority.
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These principles are based on our experiences in technical assurance (see I.1J),
enhanced by literature. Solution architects are encouraged to always keep these prin-
ciples in mind when applying RCDA practices. The principles are applied through the
individual RCDA practices as explained below.

The first principle, Cost and risks drive architecture, is explained extensively in
Chapter [§] It is applied throughout RCDA, but most explicit in the Architectural Re-
quirements Prioritization practice.

Architecture should be minimal is based on recent insights such as expressed in
[Malan and Bredemeyer, |2002] and [Fairbanks| [2010]. In order to keep overview of
the whole system, the solution architect’s decisions should be limited to those that have
critical impact on the system and its delivery - leaving a maximum of design space for
filling in details within the constraints set by that architecture. This should of course
be done with due consideration for the capabilities of those designers and developers,
and should not detract from the clarity with which the architecture is communicated.
Kazman, Bass and Klein formulate this principle as: “A software architecture should be
defined in terms of elements that are coarse enough for human intellectual control and
specific enough for meaningful reasoning.” [Kazman et al., 20006] It is applied through
the Architectural Requirements Prioritization practice.

Architecture as both blueprint and design decisions is based on the second view on
architecture described in §I.2.1] and papers such as [Jansen and Boschl 2005} [Tyree
and Akerman, 2005|. The architecture of a system is more than just a blueprint of its
high-level structure - the design decisions leading to that structure and the underlying
rationale are equally essential. No architectural description is complete without a well-
documented set of design decisions. By thinking about architecture as a set of design
decisions, we abstract away from the modeling details inherent to a particular technol-
ogy or view, and are able to give generic guidance on how architects make trade-offs
and document decisions. It also helps to focus on the rationale behind the decisions,
which is important to future architects and those implementing or reviewing the ar-
chitecture. This principle is applied through the practices Architectural Requirements
Prioritization, Solution Selection and Documenting Architectural Decisions.

Solution architect as design authority is based on views like those documented in
[Fowler, 2003]] and [Clements et al.,[2007]]. The complexity of today’s IT solutions re-
quires that the most critical design decisions are made by one person with an overview
of the whole system. This person should have the authority and the subject matter skills
and knowledge to make such decisions. This role is distinct from the project manager’s
role, and is called the Solution Architect in RCDA. Of course, architecture is often
team work, and architects should surround themselves with experts to help them make
critical decisions - but in the end, no matter how big the design team, one person is re-
sponsible for making all the trade-offs and the final decision. This principle is applied
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through the RCDA Solution Architect role.

9.2.3 Implementation

RCDA is documented on a company intranet site. On the RCDA site, each practice
is described according to a defined structure, with the following sections: Objectives,
Approach, Roles, Input, Activities, Output. Next to the practice descriptions, there are
web pages explaining the principles, key concepts, roles and templates. These is also a
quick reference guide and an “about” section that explains the background and future
plans.

The current version of RCDA is 1.1. It was reviewed and ratified by an international
panel of representatives from every major company cluster and country. It is embedded
into the company’s business operating model as the recommended solution architecture
approach.

The RCDA approach underpins the company’s internal training program for so-
lution architects. The core of this program is the Solution Architecture Practitioner
Course. In 2010 and 2011, a total of 159 architects were trained in RCDA.

9.2.4 Structure of RCDA

As described in Chapter [6] we started out to create a generic architecting process in
2006. We identified a number of business goals and usage scenarios to scope the pro-
cess (§6.2.2)), and documented requirements that the process we were creating had to
fulfill, based on the business goals (Table[6.T)and the CMMI maturity level 3 objective
(Table . Once the requirements were clear, it took us about a month to write a 60
page draft process description — and then we got stuck. It turned out that the scalability
and flexibility requirements (rg.scalable and rq.generic) were too much to be accom-
modated by a single process description. [Kazman et al.| 2006] mentions “component
techniques” for architecture analysis and design that can be “combined in countless
ways to create needs-specific methods in an agile way”’; we had harvested a number
of such techniques, but a traditional process description did not allow us the agility
required. We put the issue aside until we could find a way to resolve it.

We found a solution in 2008, when we came across Ivar Jacobson’s practices ap-
proach [Jacobson et al.l 2007]. Jacobson identifies a number of problems with tra-
ditional process descriptions, that touch the core of our issues in designing a generic
architecture process:

Problem of Completeness “By striving for completeness, the processes end up as
brittle, all-or-nothing propositions.” We had tried to construct a complete archi-
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tecting process for all possible business scenarios, and ended up with a document
that made it hard for our architects to identify the parts and techniques that would
add value to their specific situations. We also had many pieces of guidance that
we wanted to share with our architects, but which were waiting for the process
description to be complete before they could be released.

Problem of Adopting a Complete Process “Each |...] team has its own way - of -
working (explicit or tacit), changing everything is silly, changing one thing may
be smart.” We wanted our architects to improve their existing processes to im-
prove their architecting practices, rather than completely replace them with a
heavy new architecting process.

Problem of Acquiring Knowledge “People don’t read process manuals or language
specifications, they want to apply processes not read about them.” We realized
our architects didn’t need a 60 page detailed process description: they needed
easily digestible, bite-sized pieces of guidance that would help them deal with
their specific problems in their specific contexts.

Jacobson introduces an alternative to the process description: the practice, a “way
to systematically and verifiably address a particular aspect of a problem.” We decided
to adopt this alternative for our solution architecting approach. The key aspects of the
practice approach we adopted for RCDA are:

e Practices describe a way to characterize a problem and a way to address it.

e Practices can be picked and applied individually or in combination with each
other to fit a particular situation.

The practices approach helped us address a number of challenges that we had run
into when writing a traditional process description:

e It allowed us to disseminate important guidance without first having to document
a complete, extensive process, solving the problem of completeness.

e It allowed architects to easily find relevant guidance without being forced to read
a whole process description, partly solving the problem of acquiring knowledge.

e It allowed architects to apply individual practices in digestible bites, and change
only those aspects of their way of working that would add value, solving the
problem of adopting a complete process.
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Figure 9.1: RCDA Practices organized by practice set and practice category.
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Two years after adopting the idea of working with practices, we rolled out the
result: the first version of our solution architecture approach, called Risk- and Cost
Driven Architecture (RCDA). In 2011, we rolled out RCDA 1.1, the current version.
RCDA 1.1 consists of 14 practices.

Architects are not normally expected to use all of the practices all of the time:
they need to identify the best fit practices for their specific context. In order to help
architects select and navigate through the practices of interest to them, we created a
number of dimensions to structure the collection of practices:

Practice sets group practices into related tasks with similar objectives, as described in

Architecting lifecycles are typical real-life architecting scenarios, indicating which
practices are used when; they are documented in the Architecting Lifecycles
practice

Practice categories divide practices into four categories:

Core practices The downside of moving from a traditional process description
to a practice approach was that a set of practices by itself cannot fulfill
the CMMI compliance requirement for a defined process (rg.cmmi.gen in
Table [6.3). We resolved this by chaining the seven RCDA core practices
together to form a core architecting process that should be followed in ev-
ery reasonably complex project. The core process is one of the scenarios
documented in the Architecting Lifecycles practice. Core practices may
refer to supporting practices for (optional) additional guidance. The core
practices embody the principles of RCDA.

Supporting practices Supporting practices provide additional guidance on good
architecture in a project, product or bid context. This category contains all
non-core practices in the solution domain, except planning practices.

Planning practices Planning practices help the architect and project / bid man-
ager to plan architecture activities. They are all the practices in the Archi-
tecture Planning practice set.

Environment practices Environment practices are architecture practices in a
bid, project or product’s environment that provide and consume artifacts of
the solution domain, and in general impact the solution architecting, but are
not solely directed at one solution. Thus, environment practices are about
architecting across multiple individual solutions. At the moment the only
environment practice set in RCDA is Architectural Asset Management; in
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the future, additional environment practice sets may be added, related to
e.g. architectural quality monitoring.

These structures are visualized in Fig. The figure shows 22 practices: 14 that
are part of RCDA 1.1, and 8 that have been identified for future versions. The 8 future
practices are marked with an asterisk. In the figure, the 7 core practices are chained
together by arrows to symbolize the core architecting process that they form.

9.3 Impact Survey

In October 2011, all Logica architects that were trained in RCDA were surveyed. The
objective of the survey was to assess the impact of RCDA and its training on the work
of the architects. In addition to the survey itself, we organized an expert workshop; a
guided discussion with a select group of RCDA trained architecture experts. The work-
shop was held after the survey, and its purpose was to enhance the initial quantitative
analysis results with qualitative knowledge from practicing architects.

9.3.1 Survey description

At the time of the survey, 159 people were registered as having received RCDA train-
ing. All of these registered trainees received an invitation by e-mail to participate in
the survey. After two weeks, 32 (20%) had completed the survey, and the survey was
closed.

The survey consisted of three sections:

Section A General questions about the trainees’ activities after the training.

Section B Specific questions asking the respondents about the impact and frequency
of use of the guidance in RCDA.

Section C Questions asking respondents whether they agreed with statements on the
overall effectiveness of RCDA.

In order to measure at the level of individual pieces of guidance in RCDA, we
codified the most important guidance: Table lists the practices in RCDA 1.1. We
have distilled one or more key guidance elements from each practice. Every guidance
element has been given a code tag, which is used to identify the guidance element in
the survey.

In Section B, respondents were asked to indicate on a Likert scale how often they
had applied each guidance element in Table [0.1] both before and after receiving the
training:
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Table 9.1: RCDA practices and key guidance elements.

Architectural Requirements Prioritization

ARP.rc Identify architectural requirements by risk and cost impact.
ARP.sc Express architectural requirements in scenarios.
ARP.wf The architect’s daily workflow is addressing architectural concerns, prioritized by risk and cost impact.

Dealing with Non-Functional Requirements

NFR.hd Look for hidden NFRs, since they are often crucial for acceptability even when not documented.
NFR.vf Verify as early as possible that the architectural design will fulfill the NFRs.

NFR.cm  Don’t commit to quantified NFRs until you have proof of feasibility.

NFR.dc Document how NFRs are dealt with as proof of professional behavior.

Stakeholder Workshop
SW.ws Gather stakeholders in a workshop to elicit architectural requirements as early as possible.

Solution Selection
SS.ev Decide after evaluating multiple alternative solutions against objective criteria.

Solution Shaping Workshop
SSW.ws At the start of a bid or project, gather all delivery stakeholders in a solution shaping workshop to agree
on a candidate solution.

Cost-Benefit Analysis
CBA.qf Quantify the impact of architectural strategies on a solution’s quality attributes in terms of stakeholder

value.

Applying Architectural Strategies

AAS.dc Document the impact of selected architectural strategies in terms of elements, interfaces and refined
requirements.

AAS.rp After applying strategies, re-prioritize architectural concerns.

Architecture Documentation

AD.sa Use a stakeholder analysis to determine to whom the documentation is communicating.

AD.vp Use viewpoints to show stakeholders how their concerns are addressed.

Documenting Architectural Decisions

DAD.rd Use a formal Record of Decision to document key architectural decisions.

DAD.rg Use an architectural concern and decision register to prioritize and order the architecture work.
DAD.pr Communicate progress and status of architecture work in terms of architectural concerns and decisions.

Architecture Evaluation
AE.ev At key points in an architecture’s lifecycle, perform an objective evaluation and analysis of how the
architecture fulfills its stakeholders’ needs.

Architectural Prototyping

AP.pr When necessary, build a prototype or proof-of-concept to verify that architectural strategies fulfill the
requirements.

AP.oc Prepare to deal with any outcome of the PoC, including a contingency plan in case of a negative result.

Supplier Evaluation

SE.ev When third parties provide critical components of our architectural solution, evaluate the supplier to

identify potential commercial, technical, PR, quality and service related risks.

Requirements Convergence Planning
RCP.pl In case of unfeasible or unclear NFRs, agree a plan with the client that describes how to converge on
acceptance criteria, representing a balance of affordability between cost and benefits.

Architecture Lifecycles

AL.cp RCDA Core Process.
AL.rf Respond to RfP.
AL.ru RUP software development.
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never

once or twice

regularly (whenever an applicable situation occurs)
every day (part of my daily work routine)

Respondents were also asked to indicate the impact of the guidance by choosing
between:

n/a (never applied the guidance)

counter-productive (I tried applying the guidance, but it made matters worse)
neutral / mixed results

noticeable improvement (compared to acting without this guidance)

critical improvement (without applying this guidance, project would have failed
or bid would have been lost)

9.3.2 Survey results
Some general statistics to start with:

e Elapsed time from the training to the survey was between 3 and 23 months, with
an average of 9 months, meaning all respondents had time to internalize and
apply the material.

e Average time spent in architect roles was 45%. 6 respondents spent less than
10% in architect roles, of which 5 indicated they had not been in any architect
role. 12 respondents spent 75% or more of their time in architecting roles.

e 13 respondents (40%) were the lead architect on the majority of their assign-
ments, meaning they were responsible for architectural decisions.

Fig.[0.2]shows the responses to the three general statements about the effectiveness
of RCDA (Section C):

imp_gen In general, my effectiveness as an architect has improved after being trained
in RCDA.

imp_com_stkh RCDA helps me to communicate with stakeholders more effectively.

imp_prio RCDA helps me to better focus and prioritize my work as an architect.

Overall, the majority of the responding architects agree that their effectiveness has
increased, and about half agree that RCDA has brought them the benefits of the risk-
and cost driven approach described in Less then 15% disagree with any of the
statements.
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Figure 9.2: Three statements on effectiveness of RCDA

In Fig. we see how the responses to imp_gen are divided over the various
architecture “genres”. The figure confirms that the effectiveness of the risk- and cost
driven view extends beyond software architecture into the wider domain of solution
architecture. In fact, the only disagreement comes from the software architects in the
application development domain. The fact that only some software architects disagree
with the effectiveness of RCDA seems remarkable, since RCDA is mostly based on
ideas from the software architecture community. We discussed this paradox in the
expert workshop; the most likely explanation seems to be that some software architects
may have found RCDA less value-adding than other architects, because it is partly
based on ideas that were already familiar to them before receiving the training.

Fig. 0-3(D)] shows that those who have been active in lead architect roles have
stronger opinions, and in general are more positive about RCDA effectiveness than
those who have not been in lead architect roles. This visual impression is confirmed
by statistical analysis, which shows that the “lead architect” responses are significantly
correlated to the “general effectiveness” agreement responses (Spearman’s p correla-
tion coefficient of 0.34, 1-tailed significance at the 0.05 level).

RCDA principles

We asked the architects about the frequency with which they applied the general RCDA
principles explained in §9.2.2] and the impact. Table [9.2] shows the results. Column

159



CHAPTER 9. RISK- AND COST DRIVEN ARCHITECTURE: A PRAGMATIC
SOLUTION ARCHITECTING APPROACH

13949

| Application Development 7
—1 Software

[ Architects

Application Maintenance

Enterprise Architecture

Infrastructure Management

Other

Package Implementation [ iy
Architects

—1
| Systems Integration

Technical Systems
(embedded, drivers,

space,...) J

T T T T T
Strongly Disagree Neutral Agree Strongly
disagree agree

01234991394399123439133439133439123¢

(a) By architecture genre

50,0%

40,0%
-
$ 300%
H Others
0. 200%
10,0%-] I—I
0,0%
50,0%
400%
£
30,0%
H Lead
H .
& 200% Architects
10,0%

Strongly Disagree Neutral Agree Strongly
disagree agree

(b) Lead architects vs others

Figure 9.3: Agreement with “In general, my effectiveness as an architect has improved
after being trained in RCDA.”
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Table 9.2: RCDA Principles: frequency applied and impact

Principle Applied Applied Significant
before after impact

Cost and risks drive architecture*® 16%+6% | 34% +8% | 86%+7%

Architecture should be minimal* 34%+8% | 53%+8% | 88%+t6%

Architecture as both blueprint and 34%+8% | 53%+8% | 100%

design decisions

Solution architect as design authority* | 25%=+7% | 44%+8% | 86%=+7%

* Increase in application frequency significant at 0.05 level

“Applied before” and “Applied after” shows the percentage of respondents who applied
the principle before and after receiving RCDA training; “Impact” shows the percentage
of respondents who reported significant impact. Standard errors in the percentages
are indicated in the table. The table shows that the number of architects applying
the principles has increased considerably after the training, and that all four of the
principles have significant impact when applied. A paired-sample T-test between the
“frequency applied before training” and “frequency applied after training” shows that
three out of the four principles have been applied significantly more after receiving the
training: the increase in application of the “architecture as both blueprint and design
decisions” principle is not significant at the 0.05 level, the other three are significant
and are indicated with an asterisk.

RCDA practices

Fig.[0.4]shows the percentage of respondents indicating they have applied the key guid-
ance elements of the RCDA practices listed in Table[0.1] both before and after receiving
the training. All guidance elements show an increased number of respondents applying
it after the training, with the exception of Architectural Prototyping. The guidance el-
ements for which the increase is significant as calculated by a paired-sample T-test are
indicated with an asterisk. The Architectural Prototyping practice was already applied
before the training by 25% of respondents.

The percentage of trainees who applied the guidance after training is below 60%
for all guidance. This may seem low; additional light is shed on this if we compare
the percentages for lead architects versus other respondents, as visualized in Fig.[9.5]
We see that more lead architects than others are applying the guidance, and almost half
of the guidance elements are applied by the majority of the lead architects. Analysis
shows that the “lead architect” responses are significantly correlated to the “frequency
applied after training” responses for all guidance elements except ap.pr and nfr.cm
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Figure 9.4: RCDA practices: respondents applying guidance before and after training
(abbreviations on p[I57)
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(positive correlation coefficient of 0.3 or more, 1-tailed significance at the 0.05 level,
using Spearman’s p). Just like in the case of “general effectiveness” above, we see
a correlation between the solution architect’s position of authority and responsibility
(lead architect) and the frequency of applying RCDA guidance.

Fig.[9.6] shows the key guidance elements of the RCDA practices. The figure visu-
alizes the impact of the practices and their training. The horizontal axis represents the
percentage of respondents reporting an increased frequency of applying the guidance
after the training. The vertical axis represents the percentage of respondents reporting
that the guidance has had significant positive impact in their projects. The first observa-
tion is that none of the practices is reported to have increased application by more than
50% of respondents (which is in line with Fig.[9.4). On the other hand, all practices
are reported to have significant impact by over 50%.

We have clustered the guidance elements and separated the clusters by gray lines.

e In the center, we see 8 guidance elements that all have around average charac-
teristics: increased application by about 25%, and significant impact reported by
about 75% of respondents. This cluster includes Architecture Evaluation, Cost-
Benefit Analysis, Applying Architectural Strategies, Stakeholder Workshop and
guidance elements from three other practices.

e In the top left cluster, we see both the Architectural Prototyping and the Re-
quirements Convergence Plan practices. Apparently, the use of these practices
has not increased very much, even though their impact is relatively high. Part of
the explanation for this could be that both of these practices require considerable
resources and time to implement.

e In the top right cluster are the “stars” of the training: the guidance elements that
have the highest impact in terms of both usage and effectiveness. This cluster
contains the Solution Shaping Workshop, most of the guidance from Dealing
with NFRs and Documenting Architectural Decisions, and the use of viewpoints
in Architectural Documentation.

e The bottom left cluster has Supplier Evaluation and Solution Selection, two prac-
tices that require relatively formal evaluations to be performed. These are per-
ceived as relatively low-impact practices by the architects.

e The bottom right cluster contains all guidance in the Architectural Requirements
Prioritization practice. The training appears to be relatively successful in making
architects consciously prioritize their requirements; on the other hand, “only”
around 70% of the architects report that this has significant impact. A possible
explanation came out of the post survey expert workshop: because requirements
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Figure 9.5: RCDA practices: lead architects vs others applying guidance after training
(abbreviations on p[I57)
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prioritization happens relatively early in the chain of architecting activities, its
impact is perceived as more indirect than that of other practices.

Due to the limited size of the population sample, the standard error in the placement
of the guidance elements is in the same order of magnitude as the separation between
the clusters: it ranges between 6% and 8% on the x-axis and between 5% and 11% on
the y-axis. This means that the clustering should be considered tentative at this point.

Because we found significant differences between the responses of lead architects
versus other architects for the frequency and effectiveness questions, we also looked
for such differences in the impact responses for the individual guidance elements (the
Y-axis in Fig. [0.6). We found only one: all 10 lead architects (100%) who applied
architectural prototyping (ap.pr) reported significant impact, while of the 11 other ar-
chitects who applied ap.pr, only 8 (73%) reported significant impact. Analysis shows
that the “lead architect” response is significantly correlated to the “impact” response for
ap.pr (positive correlation coefficient of 0.435, 2-tailed significance at the 0.05 level,
using Spearman’s p).

9.4 Conclusions and Discussion

The results of the analysis above indicate that for the majority of trainees, RCDA has
significant positive impact on their solution architecting work. This is true for RCDA
as a whole, for its principles, and for its individual practices. The RCDA training is
effective in increasing the application of the principles and practices.

The survey validates RCDA as an approach that improves the solution architecting
practice in Logica.

The sparse application and relatively low appreciation of formal evaluation prac-
tices like se.ev and ss.ev (Fig.[0.6) is in line with findings by e.g. [Clerc et al.| 2007],
which reports that “methods and techniques to validate the architecture . . . are not em-
bedded within the mindset of architects.” Another finding from the [Clerc et al.| 2007]]
survey is that “the architects mindset lacks focus on reflections on those decisions as
building blocks for software architectures”; the success of the RCDA Documenting
Architectural Decision practice in terms of both frequency of use and perceived impact
indicates that this lack of focus can be remedied by e.g. the RCDA training.

In the after-survey expert workshop, we discussed some of the more remarkable
results of the survey with a selected group of senior architects who were familiar with
RCDA and its training. The results of this workshop are discussed below.
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Architectural prototyping

The prototyping guidance element “When necessary, build a prototype or proof-of-
concept to verify that architectural strategies fulfill the requirements” (ap.pr) jumps out
in a number of results:

O1 ap.pris the only guidance element less frequently applied after training than before
training.

02 ap.pris one of only two guidance elements whose application frequency after train-
ing is not significantly correlated with the lead architect role.

03 ap.pr is the only guidance element whose impact response is significantly corre-
lated with the lead architect role.

The workshop participants produced two possible explanations for the decrease in
application after training (O1):

E1 RCDA focuses architects’ attention on other activities, making prototyping a rela-
tively lower priority.

E2 The time passed after the training is less than before the training, the architects
simply didn’t have enough time after the training to apply ap.pr, which require
considerable resources and time to implement.

Taking all three observations together, the workshop agreed that E2 is the more
likely explanation, since E2 helps explain O2, and E1 does not match with O3. E2 also
is a good explanation for the fact that in Fig.[0.6] ap.pr is in the top left cluster with
requirements convergence planning, another practice that requires significant planning
and use of resources.

Lead architect

The trainees that were in lead architect roles after the training have given significantly
more positive responses to most of the questions related to application frequency and
overall effectiveness. The post survey expert workshop generated a number of expla-
nations for this phenomenon:

L1 Those in the lead determine which practices will be followed, so they can choose
to apply RCDA practices, while those not in the lead have to follow practices
dictated by others.

L2 The use of a common approach like RCDA is much more important for those in
the lead, since it smooths communication with stakeholders like reviewers and
managers — with whom those not in leading roles have less dealings.

167



CHAPTER 9. RISK- AND COST DRIVEN ARCHITECTURE: A PRAGMATIC
SOLUTION ARCHITECTING APPROACH

L3 RCDA promotes a position of authority for architects (the fourth principle in §9.2.2),
so that those who apply RCDA tend to take more ownership and responsibility,
which puts them in leadership positions.

The data set did not provide any means to confirm or reject any of the three expla-
nations: they may well all be valid, and reinforce each other’s impact.

9.4.1 Threats to validity

In a survey like this, there is a potential selection bias due to possible increased interest
in the survey by those who have had positive experiences with the subject of the survey.
In order to assess the magnitude of this bias, we picked 10 trainees at random from
those who had not responded to the survey. We called these 10 trainees and asked for
their reasons for not responding. The 10 gave the following answers:

o | indicated that he had not been able to apply the material.

o | indicated that he had not followed the training and was on the list of trainees
by mistake.

e 8 indicated that they had been too busy to respond to such an extensive survey.

This seems to indicate that the proportion of trainees who had not been able to apply
any of the material is roughly the same for those who responded to the survey as those
who did not respond, implying there is no significant selection bias.

Another threat is in the survey population: all results are subject to the perception of
the architects. A good example is the architects’ subjective evaluation of the impact of
the practices. The post survey expert workshop noticed that practices that reenforce the
importance of the architects and their skills tend to get higher impact ratings. Examples
of this phenomenon are:

e The highest rated impact is for the Solution Shaping Workshop, which puts the
solution architect in a key position right at the beginning of the solution shaping
process.

e Formal evaluation practices like se.ev and ss.ev are sometimes seen as reducing
the architect’s importance, since they require the architect to justify their deci-
sions; they get a relatively low impact rating.

o Architectural Requirements Prioritization directs the architect in his priorities -
and gets a much lower impact rating than the related Documenting Architectural
Decisions, which positions the architect as an (“important”) decision maker.
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The only way to assess the seriousness of this bias is to measure the impact of the
practices in ways that exclude the architect’s opinion.

Like with the other surveys in this thesis, the results are influenced by cultural
aspects of both the Logica company and the Netherlands location, and should be used
with care when applied outside of these boundaries.
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Concluding Remarks

In this chapter, we present our key conclusions. We revisit the research questions and
summarize how they have been answered in the thesis, and list the novel contributions
to the field. We also discuss promising directions for further research on the topics
treated.

10.1 Conclusions

The key high-level conclusions of this thesis are listed below.
On the topic of solution architecting:

1. Solution architecting is a risk- and cost management discipline. This is demon-
strated in Chapters [§] and [0} The Risk- and Cost Driven solution architecting
approach has significant positive impact on the work of most solution architects
trained in it.

2. CMMI support for architecting has improved significantly with version 1.3, but
could still be further improved by adding guidance for architecture governance
and architecting during the sales phase. See Chapter|[6]

3. Dealing with emotions is a crucial factor in how architectural knowledge sharing
leads to successful projects. See Chapter|[7]

On the topic of NFRs:

4. Critical NFRs should be quantified, but we should beware of premature quantifi-
cation. See Chapter 3]

171



CHAPTER 10. CONCLUDING REMARKS

5. Tendering rules and regulations have a detrimental effect on the quality of IT
solutions. The key to successful IT solutions is in trust between customers and
suppliers. Also from Chapter 3]

6. Modifiability deserves more attention than it is getting now. Observed in Chap-

ter @l
One final overall conclusion:

7. Good solution architecting is not so much a technical problem, but rather a so-
cioeconomic one. The most important observations above are not technical in
nature. They revolve around non-technical keywords like trust, emotions, risk
and cost, responsibility and authority.

In the remainder of this chapter, we will show how these conclusions are under-
pinned by the material presented in this thesis.

10.2 Contributions

Our journey towards improving solution architecting practices in Logica gave us the
opportunity to research a number of interesting questions, presented in the introduction
to this thesis (Chapter [T). By looking at how these questions were answered, we will
now summarize our new contributions to the field, and relate them to the conclusions
presented above.

10.2.1 How can Non-Functional Requirements be handled to
improve the success of IT solutions and the projects
delivering them? (RQ-1)

How can a solution be structured to best address conflicting Non-Func-
tional Requirements? (RQ-1a)

In Chapter [2, we present a new framework that both provides a model and a repeat-
able method to transform conflicting requirements into a system decomposition, called
Non-Functional Decomposition. NFD is a technique, based on the relationship be-
tween functional and non-functional requirements, that brings more clarity and struc-
ture in the mapping of requirements onto a solution architecture. Our new framework
reveals rationale behind existing architectural patterns and tactics, and can be helpful
in developing new patterns and tactics to deal with conflicting NFRs.
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What is the best way to quantify Non-Functional Requirements across a
contractual divide between customer and supplier? (RQ-1b)

In Chapter 3] we identify some key issues related to NFR quantification in customer/
supplier relationships. We argue that economic justification of NFR quantification re-
quires knowledge of the solution architecture.

We argue that critical NFRs should be quantified, but we should beware of prema-
ture quantification: as our real-life examples illustrate, prematurely quantified NFRs
can cripple projects and lead to diverging points of view in customer/supplier rela-
tionships that are very hard to resolve. Optimal quantification requires sharing of in-
formation between customer and supplier, and it requires time to establish at least a
reasonably proven estimate for the cost and value relationships. We suggest a possible
way to create better NFR quantification circumstances for customers and suppliers: by
means of a requirements convergence plan.

We conclude that trust between customers and suppliers in the IT industry is key to
successful solutions. This is a matter of attitude. With the ever growing complexity of
IT systems and projects, transparency and awareness between customers and suppliers
about NFRs is essential to the feasibility of IT projects. So is willingness to share the
risk of unquantified NFRs. Both transparency and risk sharing cannot exist without
trust.

How do architects perceive and deal with non-functional requirements?
(RQ-1c)

Chapter [ presents the results of a survey about dealing with non-functional require-
ments (NFRs) among architects. We find that, as long as the architect is aware of the
importance of NFRs, they do not adversely affect project success, with one exception:
highly business critical modifiability tends to be detrimental to project success, even
when the architect is aware of it. IT projects where modifiability is relatively business
critical perform significantly worse on average. Our conclusion is that modifiability
deserves more attention than it is getting now, especially because in general it is quan-
tified and verified considerably less than other NFRs. Practitioners should be careful
when dealing with IT projects with a strong focus on modifiability. We advise to pay
particular attention to aspects like managing customer expectations, because it seems
that customer satisfaction especially is significantly lower on average in this type of IT
projects.

Furthermore, IT projects that applied NFR verification techniques relatively early
in development were more successful on average than IT projects that did not apply
verification techniques (or applied it relatively late in development). Thus, practitioners
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should be aware that the long term benefits of verification outweigh the short term extra
costs.

10.2.2 What is a good solution architecting approach to im-
prove an IT service provider’s success? (RQ-2)

What is the nature of solution architecting in the business context of a
large IT services company? (RQ-2a)

In Chapter[8] we present our innovative view on the nature of solution architecture: as a
risk- and cost management discipline. This view extends existing views of architecture
as a higher level abstraction and as a set of design decisions. In comparison with
these existing views, it helps architects better order their work, and it helps in better
communicating about the architecture with stakeholders in business terms. We also
provide guidance on implementing this view in industrial contexts.

What requirements does an architecture process need to fulfill in order
to comply with CMMI maturity level 3? (RQ-2b)

Chapter [6]identifies the requirements to make a generic architecting process compliant
with CMMI Maturity Level 3, and analyzes the process areas significant to architecting.
Our conclusions are that architecture is not a well-defined concept in the CMMI 1.1,
but it is improved in later versions of CMMI. CMMI can still be improved in the areas
of architecture governance, facilitating the sales phase and learning from architectural
choices.

How do architectural knowledge sharing practices relate to challenges in
solution delivery projects? (RQ-2c)

In Chapter [7] we describe a survey to gain insight into the mechanisms around archi-
tectural knowledge sharing in projects. The analysis shows that architects face many
challenges sharing architectural knowledge in projects, especially in large projects.
Most of the common challenges appear to be generally neutralized somehow, since
they show no correlation with project success. The only challenges that are correlated
with project success are the ones related to interpersonal relationships. We conclude
that dealing with emotions is a crucial factor in how architectural knowledge sharing
leads to successful projects.
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What architecting practices address an IT service provider’s business re-
quirements, and what guidance should they contain? (RQ-2d)

Logica’s Risk- and Cost Driven Architecture approach is presented in Chapter [0} By
combining ideas from [Jacobson et al., [2007] and [Kazman et al., |2006], we docu-
ment architecting component techniques in practices, embedded in a new framework
of structural dimensions to ease identification and integration of best fit practices in
a particular context. The practices were harvested from Logica practitioners and en-
hanced by research. In a way, RCDA is the logical result and culmination of the work
presented in this thesis:

e In Part I, we researched ways to handle NFRs; the resulting guidance is em-
bedded in the RCDA practices Dealing with Non-Functional Requirements and
Requirements Convergence Planning.

e In Chapter [5] we saw the importance of an environment where architects can
argue their choices and priorities in an objective manner, and select practices
that best fit those priorities, rather than follow fashion. RCDA stimulates such
an environment by introducing practices that objectify architectural decisions
and priorities, and put them in a business context.

e The RCDA core practices constitute a solution architecting process that fulfills
the requirements of CMMI Maturity Level 3, as analyzed in Chapter [6]

e RCDA helps architects to deal with emotions (Chapter [/) by smoothing their
communication with their solutions’ stakeholders; translating architectural con-
cerns and decisions into business terms like risk and cost (Chapter [g).

What is the effect of training architects in such architecting practices?
(RQ-2e)

The results of a survey among architects trained in RCDA indicate that for the majority
of trainees, the approach has significant positive impact on their solution architecting
work. This is true for RCDA as a whole, for its principles, and for its individual
practices. The positive effects, however, appear to be much stronger if the architects
are in a position of responsibility and authority.

10.3 Discussion

The research presented in this thesis started out with the goal of finding out how to
architect IT solutions that adequately serve their purpose, especially in client/supplier
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situations. The research was performed within the context of technical assurance: as-
suring the feasibility, suitability and acceptability of solutions. Although the work
treated many technical aspects, the most important conclusions are not technical in
nature. They revolve around non-technical keywords like trust (Chapter [3]), emotions
(Chapter [7), risk and cost (Chapter [§), responsibility and authority (Chapter D). Per-
haps the main conclusion of this thesis should be that the problem of good solution
architecting is not so much a technical problem, but rather a socioeconomic one; a
conclusion already hinted at in e.g. [Clerc et al., 2007} [Sutcliffel 2008].

10.3.1 Future directions

Within Logica, the journey to improve solution architecting practices will continue.
RCDA will be extended with new practices, some of which have already been identified
in Chapter 0] More and more architects will be trained and gain experience applying
the guidance. As evidence of the benefits of RCDA grows, parts of the approach will
get an increasingly formal status in the company’s business management system. The
success of RCDA has prompted other engineering disciplines within the company to
structure their guidance according to the Jacobson-like practices approach [Jacobson
et al., |2007]. All of this will lead to new opportunities for research. One promising
direction for such research is to relate the application of solution architecting principles
and practices to actual metrics gathered in projects, rather than depend on surveys
among architects. Another obvious extension of the research presented here is to repeat
the research outside of Logica, and outside of the Netherlands.

Another interesting direction for research would be the relationship between so-
lution architecting practices and architecting maturity. Could the identification of the
solution architecting practices help in assessing an organization’s solution architecting
maturity, e.g. by enhancing or replacing existing Architecture Maturity Models like the
IT Architecture Capability Maturity Model (ACMM) [US Department of Commercel,
2007]? Or could they be used to improve the assessment of individual architects’ level
of competence in frameworks like Open CA (formerly ITAC) [The Open Group|]?

In this thesis, we have taken insights gathered in the software architecture com-
munity, and successfully applied them to the wider area of solution architecture. An
interesting avenue of exploration would be to find out how the solution architecture
principles and practices discussed here relate to other architecture genres, such as sys-
tems architecture and enterprise architecture. [[Clements| 2009] provides a good basis
for such work.
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Naarmate Informatie- en Communicatietechologie een steeds belangrijkere plaats in
ons leven inneemt, groeit ook de invloed van de ontwerpbeslissingen die de ICT-
oplossingen hun vorm geven. Wij voelen deze invloed in onze verwondering over
de nieuwe mogelijkheden die ontwikkelingen als het Internet brengen - mogelijkheden
die onze beleving van maatschappelijke interactie binnen één generatie ingrijpend ver-
anderd hebben. Maar de uitwerking van ICT-ontwerpbeslissingen is niet altijd positief.
Vaak voelen we negatieve invloed als kleine irritaties, zoals onze kinderen die klagen
wanneer hun favoriete social media site kleine veranderingen doorvoert. Soms gaat het
echter écht mis, met verreikende gevolgen.

Van tijd tot tijd doet een enkele foutieve beslissing haar invloed gelden in het poli-
tieke landschap van een heel land, of zelfs wereldwijd. In de afgelopen 10 jaar kende
Nederland een aantal van dit soort mislukkingen, zoals het slecht werkende C2000
communicatiesysteem voor noodhulpverleners, de fraudegevoelige OV-chipkaart en de
jarenlange vertraging in het openstellen van tunnels vanwege kwaliteitsproblemen in
de veiligheidssoftware. In al deze drie gevallen lag het probleem niet in de functio-
naliteit van de oplossingen: het waren de andere, “‘extra-functionele” aspecten waar
het misging. Deze extra-functionele aspecten worden in het Engels vaak aangeduid als
non-functional requirements (NFRs). Het gaat hier om kwaliteitsattributen als pres-
tatie, vertrouwelijkheid, veiligheid en betrouwbaarheid. De laatste tientallen jaren is
steeds duidelijker geworden dat deze attributen worden bepaald door de architectuur
van de oplossing, en dat de vereisten aan deze kwaliteitsattributen dus leidend zouden
moeten zijn bij het ontwerpen van de oplossingsarchitectuur.

Een rapport van Dalcher en Genus uit 2003 schat de totale financiéle kosten van
falende ICT-projecten in de VS en de EU op 290 miljard dollar per jaar. Wellicht
belangrijker is de significante invloed die bovenstaande voorbeelden hebben op onze
kwaliteit van leven. Sommige zijn zelfs levensbedreigend. Om deze problemen op te
kunnen lossen is er een beter begrip van extra-functionele aspecten en hun uitwerking
in de architectuur van ICT-oplossingen nodig.

Dit proefschrift is tot stand gekomen in de context van een verbetertraject voor
architectuurpraktijken in Logica, een grote Europese ICT-dienstverlener. Dit traject
begon in 2003, toen we vaststelden dat er behoefte was aan een beter begrip van de
invloed van extra-functionele aspecten op onze oplossingen. Het eerste deel van dit
proefschrift richt zich op het onderzoek naar deze aspecten.

De eerste vraag die wordt behandeld is hoe oplossingen zodanig gestructureerd
kunnen worden dat extra-functionele aspecten optimaal geaddresseerd worden. Ons
onderzoek naar deze vraag heeft geleid tot “Non-Functional Decomposition” (NFD),
een nieuw raamwerk waarmee conflicterende systeemeisen kunnen worden gebruikt
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om een optimale oplossingsstructuur te bepalen. NFD is gebaseerd op de relatie tussen
functionele en extra-functionele systeemeisen, en verduidelijkt de samenhang tussen
eisen aan en architectuur van een oplossing. Ons raamwerk werpt nieuw licht op de
redenen waarom bestaande architectuurpatronen werken, en kan helpen bij het ontwik-
kelen van nieuwe patronen om conflicterende NFRs aan te pakken.

Een gemeenschappelijke factor in veel problematische ICT-projecten is de traditi-
onele opdrachtgever/leverancier situatie, waarbij de eisen waaraan de oplossing moet
voldoen (de “wat”-vraag) wordt opgesteld door een opdrachtgever en het architectuur-
ontwerp (de “hoe”’-vraag) door één of meer leveranciers. Een sleutelprobleem in deze
situaties is het kwantificeren van de NFRs: het bepalen van de vereiste getalswaarde
waaraan een kwaliteitsattribuut van een oplossing moet voldoen. Uit ons onderzoek
blijkt dat een optimale kwantificatie van NFRs aanmerkelijk wordt gehinderd door de
beperkingen die aanbestedingsregels opleggen aan de communicatie tussen leverancier
en opdrachtgever. De aanbestedingsregels kunnen een opdrachtgever zelfs dwingen
om de leverancier te kiezen die het slechtste begrip heeft van de impact van de extra-
functionele eisen. Het blijkt uit economisch oogpunt verstandiger om het kwantificeren
van NFRs uit te stellen totdat opdrachtgever en leverancier voldoende tijd hebben ge-
had om de waarde en kosten die met deze eisen samenhangen in kaart te brengen en
met elkaar te delen. Ons onderzoek wijst in de richting van een aantal mogelijke oplos-
singen, waaronder het breder inzetten van de concurrentiegerichte dialoog bij publieke
aanbestedingen van ICT-projecten. Het kernprobleem oplossen vergt echter een veran-
dering in houding: beide partijen dienen het vertrouwen te hebben om informatie over
de impact van extra-functionele aspecten aan hun zijde van het contract te delen, en
een gelijkwaardig aandeel in de betreffende risico’s te aanvaarden.

Uit een enquete onder architecten blijkt dat de meeste extra-functionele eisen geen
meetbare negatieve invloed hebben op het succes van ICT-projecten, zolang de archi-
tect zich tenminste bewust is van die eisen. De uitzondering op deze regel is modifi-
ceerbaarheid: projecten waarin dit aspect van kritisch belang wordt geacht presteren
gemiddeld significant slechter dan andere projecten. Onze conclusie is dat modificeer-
baarheid meer aandacht verdient dan het nu krijgt, vooral omdat het over het algemeen
minder wordt gekwantificeerd en geverifieerd dan andere NFRs. Architecten dienen
zorgvuldig te handelen in projecten met een sterke focus op modificeerbaarheid. Aan-
gezien volgens ons onderzoek met name de klanttevredenheid gemiddeld lager is in dit
type projecten, adviseren wij om vooral aandacht te schenken aan de verwachtingen
rondom de modificeerbaarheid van de oplossing.

Het hierboven genoemde verbetertraject voor architectuurpraktijken binnen Lo-
gica kreeg in 2006 meer vaart en richting, toen de Technical Board van het bedrijf
de noodzaak van een standaard architectuur-aanpak uitte. Het uiteindelijke resultaat
was een nieuwe aanpak voor oplossingsarchitectuur: Risk- and Cost-Driven Architec-
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ture (RCDA). De voedingsbodem voor zowel het onderzoek in dit proefschrift als de
RCDA aanpak was de functie van “Technical Assurance”, een technisch-geweten rol
die de auteur vanaf 2005 bekleedde binnen het bedrijf. Vanuit die rol was er intensieve
interactie met honderden ICT-projecten van uiteenlopende omvang en complexiteit,
en dat is één van de belangrijkste bronnen voor het onderzoek dat hier gepresenteerd
wordt. Een andere belangrijke bron is de internationale architectengemeenschap bin-
nen het bedrijf. Dit alles heeft geleid tot het tweede deel van dit proefscrhift, dat zich
richt op het vinden van een goede oplossingsarchitectuur-aanpak, en eindigt met het
presenteren van RCDA.

De grondslag voor RCDA ligt in nieuwe inzichten in de aard van oplossingsar-
chitectuur. In de loop der jaren zijn wij architectuur gaan zien als een discipline om
risico’s en kosten te beheersen. Deze visie is een extensie van bestaande visies op ar-
chitectuur als abstractieniveau en als een verzameling ontwerpbeslissingen. In verge-
lijking met deze bestaande visies helpt de risico- en kostengedreven aanpak architecten
bij het ordenen van hun werk, en bij het communiceren erover met belanghebbenden
in zakelijke termen. RCDA is een verzameling praktijken, ingebed in een raamwerk
dat het selecteren en toepassen ervan in de praktijk faciliteert. De praktijken zijn ge-
oogst vanuit het bedrijf en de literatuur, en aangescherpt door onderzoek. Een enquete
onder de in RCDA getrainde architecten wijst uit dat de aanpak voor de meerderheid
van hen een significant positieve invloed heeft op hun werk. Dit geldt zowel voor de
RCDA-aanpak, als voor de principes erachter en de individuele praktijken die de aan-
pak omvat. Tevens blijkt dat de aanpak verreweg het beste werkt als de architect een
positie met verantwoordelijkheid en autoriteit bekleedt, bijvoorbeeld als lead-architect.

Bij het tot stand komen van RCDA hebben we naar twee aspecten nog afzon-
derlijk onderzoek verricht: de eisen die procesverbeterstandaard CMMI aan een ar-
chitectuuraanpak stelt, en de rol van architectuurkennisdeling in ICT-projecten. Uit
het onderzoek blijkt dat de nieuwste versie van CMMI, 1.3, aanmerkelijk beter is
ten opzichte van versie 1.1 in het ondersteunen van architectuurprocessen. De ge-
bieden waarop nog meer verbetering kan worden bereikt zijn het managen van aan
architectuur-gerelateerde hulpbronnen, het bedrijven van architectuur in de verkoop-
fase en het leren van architectuurkeuzes. Voor het onderzoek naar de rol van architec-
tuurkennisdeling hebben we opnieuw een enquete onder architecten uitgevoerd. Uit de
analyse van de enqueteresultaten blijkt dat architecten veel uitdagingen moeten over-
winnen bij het delen van architectuurkennis in projecten, vooral in grotere projecten.
De meest voorkomende uitdagingen tonen geen correlatie met projectsucces, dus ze
worden op de een of andere manier over het algemeen geneutraliseerd. De uitdagingen
die wél gecorrelleerd zijn met projectsucces hebben allemaal iets te maken met inter-
menselijke relaties. Wij concluderen dat het omgaan met emoties een cruciale factor is
in hoe architectuurkennisdeling leidt tot succesvolle projecten.
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Uit dit alles kan nog één overkoepelende conclusie getrokken worden. Oplossings-
architectuur is een uit de Informatie- en Communicatietechnologie voortgekomen dis-
cipline. De belangrijkste bevindingen uit ons onderzoek wijzen echter hoofdzakelijk
op het belang van niet-technische begrippen als vertrouwen, emoties, risico’s en kos-
ten, verantwoordelijkheid en autoriteit. Onze eindconclusie is dan ook dat goed oplos-
singsarchitectuur bedrijven niet zozeer een technische, alswel een socio-economische
uitdaging is.
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