
© 2014 IEEE, pre-publication version of Eltjo R. Poort, "Driving Agile Architecting with Cost and Risk", IEEE Software, vol.31, no.
5, pp. 20-23, Sept.-Oct. 2014, doi:10.1109/MS.2014.111, http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6898730

Driving Agile Architecting with Cost and Risk

Eltjo R. Poort, CGI

A lot has been said and written about the relationship between agile development and architecture. As long ago as
four years back, IEEE Software had a special issue on it. It looks like the debate is starting to settle down: we see
agile methods that include architecting, like the Scaled Agile Framework, and we see architecting frameworks like
TOGAF add agile elements. As the dust is settling down, what have we learned? At CGI1, architects have learned to
use economic drivers like risk and cost to enhance the agility of their work.

Below are five pieces of advice that architects can use to become effective in an agile world, without having to
implement a new method or framework. They describe changes in attitude or behavior rather than complete
practices or principles, and so are easy to digest and apply. The ideas are based on a solution architecting
approach called Risk- and Cost-Driven Architecture. Core to the approach is the use of risk and cost to determine
the architectural significance of concerns. Agility is achieved by keeping the architecture light-weight, addressing
only those concerns that are especially risky or costly to address. A risk- and cost-driven backlog of architectural
concerns balances the generally value-driven product backlog to achieve “just enough anticipation” in the evolution
of software solutions.

Decisions are your main deliverable

One of the criticisms of architecture from the agile community is based on the misconception that an architect’s
purpose in life is to deliver “an architecture”, commonly interpreted as a piece of documentation – which, according
to the Agile Manifesto, is valued less than working software [2]. This is a poor representation of what real architects
do every day: they watch out for architectural concerns to address, figure out the options they have for addressing
those concerns, and then decide the best course of action, given their current context (the three circles in Figure 1).
Looking at it this way, the architect’s main deliverable is not a document, but a stream of decisions [3]. This way of
looking at architecture work is perfectly compatible with the agile mindset, regardless of whether these decisions
emerge from early implementation and refactoring, from careful up-front modeling, or from a combination of both. In
agile projects, decisions often emerge from a group process with shared ownership, but even then it makes sense
to look to the architect as the role that safeguards the conceptual integrity of the overall design. So the role of the
architect is to make sure that the group’s decisions are consistent across the whole solution, even when multiple
teams are working on it simultaneously.

Figure 1 The architect's daily job: an “Architecting Microcycle”.

1 CGI is a global IT and business process services provider delivering business consulting, systems integration and
outsourcing services.

© 2014 IEEE, pre-publication version of Eltjo R. Poort, "Driving Agile Architecting with Cost and Risk", IEEE Software, vol.31, no.
5, pp. 20-23, Sept.-Oct. 2014, doi:10.1109/MS.2014.111, http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6898730

Keep a backlog of architectural concerns

Architects working in an agile environment do not have a pre-approved, fixed
set of specifications they can base their design on. Even architects working in a
traditional waterfall context cannot rely on the environment to remain fixed,
since they are expected to design a future-proof solution that anticipates and
can survive a certain amount of change. One of the tools used in the agile world
to embrace change is a product backlog: an ordered list of requirements waiting
to be implemented. A backlog can easily be re-ordered to accommodate
changes in requirements or in the way they are valued over time – making it
easier to embrace change than if an extensive plan had been drawn up. As
depicted in Figure 1, the architect’s backlog consists of the architectural
concerns to be addressed, since they determine her workload. By frequently re-
assessing the priority of the concerns in the backlog, the architect becomes
more flexible in dealing with new business requirements and emerging insights.

Let economic impact determine your focus

So how do we prioritize the concerns in our backlog? Which should be
addressed first? A decade ago, Martin Fowler wrote that “architecture is about
the important stuff – whatever that is” [4]. We have found that considering
economic impact helps us to determine what is important. In other words, we
have found that an estimate of the likely economic impact of a concern is a
good indicator to assess its architectural significance. When the concerns are
about what to build, business value is crucial. Many architects, however, spend
most of their time worrying about how to build it – in which case, risk and cost
are key. When you use risk and cost to determine the focus of your attention
you will not only ensure your economic impact on the project, but will also be
able to easily explain your priorities to business stakeholders in terms that they
will understand.

Using economic impact as an indicator of architectural significance also
eliminates the fallacy that architecture should only be about concerns at a high
level of abstraction, and not about details. Sometimes the devil is in the details,
and some low-level design decisions can be very risky – so they should be on
the architect’s radar, or even coded by the architect.

Keep it small

Even in large projects, there are two very good reasons to stick to minimal
architecture:

1. Architecture is hard to change, and the bigger the architecture, the
harder it is to change. Having too many architectural decisions
becomes ballast as conditions change making it difficult to respond
quickly; they may also unnecessarily restrict the design space for the
individual development teams working within the architecture.

2. An architect can only safeguard conceptual integrity if she can
understand the architecture in its entirety. Too many details and the
architect risks losing the overview required to maintain consistency
across a complex solution.

In most plan-driven projects, one can identify an architecture milestone. This is
the moment of committing to the architecture: after this milestone, reversing key
architectural decisions becomes very costly and time-consuming. The optimal
amount of “up-front” architecting to be done before this milestone is best
determined by careful consideration of three factors namely size, criticality and
volatility [5], rather than though dogmatic slogans like “You Ain’t Gonna Need

Risk- and Cost-
Driven
Architecture

Risk- and Cost-Driven
Architecture (RCDA) is a
solution architecting
approach developed CGI.
RCDA was originally
intended for internal use
by architects shaping
solutions to often very
tight deadlines in bids
and contracts. Due to its
agility, scalability and
wide range of applicable
solutions, RCDA
gathered wider interest.
RCDA was validated by
published, peer-reviewed
research [1], and is a
recognized architecting
method in the Open
Group Certified Architect
program (OpenCA).

© 2014 IEEE, pre-publication version of Eltjo R. Poort, "Driving Agile Architecting with Cost and Risk", IEEE Software, vol.31, no.
5, pp. 20-23, Sept.-Oct. 2014, doi:10.1109/MS.2014.111, http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6898730

It”. Bigger, more complex solutions and solutions that are more business critical require more up-front architecting;
but in a more volatile environment, less up-front architecting is better. Many agile projects, however, have no
architecture milestone, and need a different way to determine how small they should keep the architecture. The next
piece of advice addresses this.

Just enough anticipation

How do architects in agile projects determine the right amount of architecture? According to the first piece of advice
above, the architecture is a flow of architectural decisions. This flow should be ahead of solution development and
delivery with just enough anticipation.

The tools at your disposal to determine the right amount of anticipation are dependency analysis, technical debt
control and economic consideration of future options [7]:

 Use dependency analysis to determine which architectural components are needed to realize anticipated
user stories.

 Use technical debt control to prevent the solution from deteriorating when too many user features are added
without taking the time for refactoring. Identify architectural debt, and plan its resolution in time. Here, we
are not talking about implementation debt that can be measured by code analysis tools. With architectural
debt, we mean structural imperfections and technological gaps that hinder agility, and can petrify the whole
solution if left unaddressed.

 Weigh your options by careful economic consideration. Models like Net Present Value can yield objective
insight into the right timing for implementing architectural decisions. Use these techniques to discuss the
right amount of anticipation with greedy product managers, worried operational staff and other stakeholders.
Economic predictions, however imprecise they sometimes are, still tend to be more convincing than
references to agile dogmas, generic design principles or gut-feeling.

The Scaled Agile Framework [6] uses the metaphor of a runway that is continuously being extended while in
operation, so that it is always just long enough to accommodate the new planes that are anticipated (the planes in
the metaphor are upcoming solution requirements). The new, bigger planes can only land after the runway is
extended for them: dependency analysis is used to determine which runway extensions are required to land which
planes. Sometimes you may temporarily extend the runway with an inferior material for the sake of speed: this
represents technical debt that will have to be repaid (repaved) at some point to prevent accidents. All decisions
(when to extend or repave the runway) should be based on sound economic reasoning.

Conclusion

That’s it: five pieces of advice for agile architecting. Decisions are your main deliverable; the decisions address
concerns that you keep in a backlog, prioritized by economic impact: risk and cost. These decisions result in a
minimal architecture, with just enough anticipation. There is a lot more to say on agile architecting, pertaining to
topics like project organization (is the architect a member of the development team?) and development process
(how do you achieve short feedback loops?). These five pieces of advice are limited to what you should be able to
apply in any organization or process.

© 2014 IEEE, pre-publication version of Eltjo R. Poort, "Driving Agile Architecting with Cost and Risk", IEEE Software, vol.31, no.
5, pp. 20-23, Sept.-Oct. 2014, doi:10.1109/MS.2014.111, http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6898730

Figure 2 Scrum context: aligning the Architecture Microcycle with the daily stand-up meeting to facilitate collective
architectural decision making

The advice can be applied in agile project methodologies like Scrum, as illustrated in Figure 2, where the
Architecting Microcycle of Figure 1 is used to add architecture runway improvements to the product backlog. These
architectural improvements complement the user features to create a balance of anticipation in the product backlog.
But the advice is equally applicable to architects working in plan-driven projects, who also often have to time-box
their work dealing with changes and emerging insights. Regardless of the project methodology, architects have to
make sure they address the most significant architectural concerns, where risk and cost prove to be good indicators
of architectural significance.

References
[1] Agile Alliance, "Manifesto for Agile Software Development," 2001. [Online]. Available: http://agilemanifesto.org/.

[Accessed 2013].

[2] J. Tyree and A. Akerman, "Architecture decisions: Demystifying architecture.," IEEE Software, pp. 19-27, 22(2)
2005.

[3] M. Fowler, "Who Needs an Architect?," IEEE Software, pp. 2-4, July/August 2003.

[4] B. Boehm, "Architecting: How Much and When?," in Making Software: What Really Works, and Why We Believe
It , O'Reilly Media, 2010.

[5] N. Brown, R. L. Nord and I. Ozkaya, "Enabling Agility Through Architecture," CrossTalk, November/December
2010.

[6] Scaled Agile Framework Collaborators, "Scaled Agile Framework," [Online]. Available:
http://scaledagileframework.com. [Accessed 2014].

[7] E. R. Poort and H. van Vliet, "RCDA: Architecting as a Risk- and Cost Management Discipline," Journal of
Systems and Software, pp. 1995-2013, 2012.

